Centrosome age regulates kinetochore microtubule stability and biases chromosome mis-segregation

  1. Ivana Gasic
  2. Purnima Nerurkar
  3. Patrick Meraldi  Is a corresponding author
  1. University of Geneva, Switzerland
  2. Eidgenössische Technische Hochschule Zürich, Switzerland

Abstract

The poles of the mitotic spindle contain one old and one young centrosome. In asymmetric stem cell divisions, the age of centrosomes affects their behaviour and their probability to remain in the stem cell. In contrast, in symmetric divisions old and young centrosomes are thought to behave equally. This hypothesis is, however, untested. Here, we show in symmetrically dividing human cells, that kinetochore-microtubules associated to old centrosomes are more stable than those associated to young centrosomes, and that this difference favors the accumulation of premature end-on attachments that delay the alignment of polar chromosomes at the old centrosome. This differential microtubule stability depends on cenexin, a protein enriched on old centrosomes. It persists throughout mitosis, biasing chromosome segregation in anaphase by causing daughter cells with old centrosomes to retain non-disjoint chromosomes 85% of the time. We conclude that centrosome age imposes via cenexin a functional asymmetry on all mitotic spindles.

Article and author information

Author details

  1. Ivana Gasic

    Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Purnima Nerurkar

    Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Patrick Meraldi

    Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland
    For correspondence
    Patrick.meraldi@unige.ch
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Gasic et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,772
    views
  • 679
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ivana Gasic
  2. Purnima Nerurkar
  3. Patrick Meraldi
(2015)
Centrosome age regulates kinetochore microtubule stability and biases chromosome mis-segregation
eLife 4:e07909.
https://doi.org/10.7554/eLife.07909

Share this article

https://doi.org/10.7554/eLife.07909

Further reading

    1. Cell Biology
    Tomoharu Kanie, Roy Ng ... Peter K Jackson
    Research Article

    The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of ciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures ciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for the ciliary vesicle recruitment, but not for other steps of cilium formation (Tomoharu Kanie, Love, Fisher, Gustavsson, & Jackson, 2023). The lack of a membrane binding motif in CEP89 suggests that it may indirectly recruit ciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and a ciliary vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similarly to CEP89 knockouts, ciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the ciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing a myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing properly to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the ciliary vesicles.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Santi Mestre-Fos, Lucas Ferguson ... Jamie HD Cate
    Research Article

    Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs). Using Quick-irCLIP and alternative polyadenylation (APA) Seq, we show eIF3 crosslinks predominantly with 3’ untranslated region (3’-UTR) termini of multiple mRNA isoforms, adjacent to the poly(A) tail. Furthermore, we find that eIF3 engagement at 3’-UTR ends is dependent on polyadenylation. High eIF3 crosslinking at 3’-UTR termini of mRNAs correlates with high translational activity, as determined by ribosome profiling, but not with translational efficiency. The results presented here show that eIF3 engages with 3’-UTR termini of highly translated mRNAs, likely reflecting a general rather than specific regulatory function of eIF3, and supporting a role of mRNA circularization in the mechanisms governing mRNA translation.