Bystander hyperactivation of preimmune CD8+ T cells in chronic HCV patients

  1. Cécile Alanio
  2. Francesco Nicoli
  3. Philippe Sultanik
  4. Tobias Flecken
  5. Brieuc Perot
  6. Darragh Duffy
  7. Elisabetta Bianchi
  8. Annick Lim
  9. Emmanuel Clave
  10. Marit M van Buuren
  11. Aurélie Schnuriger
  12. Kerstin Johnsson
  13. Jeremy Boussier
  14. Antoine Garbarg-Chenon
  15. Laurence Bousquet
  16. Estelle Mottez
  17. Ton N Schumacher
  18. Antoine Toubert
  19. Victor Appay
  20. Farhad Heshmati
  21. Robert Thimme
  22. Stanislas Pol
  23. Vincent Mallet
  24. Matthew L Albert  Is a corresponding author
  1. Institut Pasteur, France
  2. University Pierre et Marie Curie, France
  3. Albert-Ludwigs-Universität, Germany
  4. Assistance publique - hôpitaux de Paris, France
  5. The Netherlands Cancer Institute, Netherlands
  6. Lunds University, Sweden
  7. Assistance publique - Hôpitaux de Paris, France
  8. Université Paris Descartes, France
  9. Assistance Publique - Hôpitaux de Paris, France
  10. Albert-Ludwigs-Universität Freiburg, Germany

Abstract

Chronic infection perturbs immune homeostasis. While prior studies have reported dysregulation of effector and memory cells, little is known about the effects on naïve T cell populations. We performed a cross-sectional study of chronic hepatitis C (cHCV) patients using tetramer-associated magnetic enrichment to study antigen-specific inexperienced CD8+ T cells (i.e., tumor or unrelated virus-specific populations in tumor-free and sero-negative individuals). cHCV showed normal precursor frequencies, but increased proportions of memory-phenotype inexperienced cells, as compared to healthy donors or cured HCV patients. These observations could be explained by low surface expression of CD5, a negative regulator of TCR signaling. Accordingly, we demonstrated TCR hyperactivation and generation of potent CD8+ T cell responses from the altered T cell repertoire of cHCV patients. In sum, we provide the first evidence that naïve CD8+ T cells are dysregulated during cHCV infection, and establish a new mechanism of immune perturbation secondary to chronic infection.

Article and author information

Author details

  1. Cécile Alanio

    Unités de Recherche Internationales Mixtes Pasteur, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Francesco Nicoli

    Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Marie Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Philippe Sultanik

    Unités de Recherche Internationales Mixtes Pasteur, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Tobias Flecken

    The University Medical Center Freiburg, Department of Internal Medicine II, Albert-Ludwigs-Universität, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Brieuc Perot

    Unités de Recherche Internationales Mixtes Pasteur, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Darragh Duffy

    Unités de Recherche Internationales Mixtes Pasteur, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Elisabetta Bianchi

    Immunoregulation Unit, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Annick Lim

    Plateforme d'Immunoscope, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Emmanuel Clave

    Hôpital Saint Louis, Assistance publique - hôpitaux de Paris, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Marit M van Buuren

    Department of Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  11. Aurélie Schnuriger

    Laboratoire de virologie, Hôpital Armand-Trousseau, Assistance publique - hôpitaux de Paris, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Kerstin Johnsson

    Mathematics, Faculty of Engineering, Lunds University, Lund, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  13. Jeremy Boussier

    Unités de Recherche Internationales Mixtes Pasteur, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  14. Antoine Garbarg-Chenon

    Laboratoire de virologie, Hôpital Armand-Trousseau, Assistance publique - Hôpitaux de Paris, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  15. Laurence Bousquet

    Institut Cochin, Université Paris Descartes, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  16. Estelle Mottez

    Centre d'Immunologie Humaine, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  17. Ton N Schumacher

    Department of Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  18. Antoine Toubert

    Hôpital Saint-Louis, Assistance publique - hôpitaux de Paris, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  19. Victor Appay

    Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Marie Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  20. Farhad Heshmati

    Etablissement Français du Sang, Hôpital Cochin, Assistance Publique - Hôpitaux de Paris, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  21. Robert Thimme

    The University Medical Center Freiburg, Department of Internal Medicine II, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  22. Stanislas Pol

    Institut Cochin, Université Paris Descartes, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  23. Vincent Mallet

    Institut Cochin, Université Paris Descartes, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  24. Matthew L Albert

    Unités de Recherche Internationales Mixtes Pasteur, Institut Pasteur, Paris, France
    For correspondence
    albertm@pasteur.fr
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: 29 cHCV, 37 SVR, and 18 cHBV patients were included (Table 1). All subjects were followed in the Liver Unit of H�pital Cochin (Paris, France) or the Department of Internal Medicine II (Freiburg, Germany). French samples were obtained as part of study protocol C11-33 approved by the INSERM clinical investigation department with ethical approval from the CPP Ile-de-France II, Paris (ClinicalTrials.gov identifier: n{degree sign}NCT01534728). German samples were obtained in the University Hospital Freiburg according to regulations of local ethic committee. Both study protocols conformed to the ethical guidelines of the Declaration of Helsinki, and patients provided informed consent.

Copyright

© 2015, Alanio et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,755
    views
  • 489
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cécile Alanio
  2. Francesco Nicoli
  3. Philippe Sultanik
  4. Tobias Flecken
  5. Brieuc Perot
  6. Darragh Duffy
  7. Elisabetta Bianchi
  8. Annick Lim
  9. Emmanuel Clave
  10. Marit M van Buuren
  11. Aurélie Schnuriger
  12. Kerstin Johnsson
  13. Jeremy Boussier
  14. Antoine Garbarg-Chenon
  15. Laurence Bousquet
  16. Estelle Mottez
  17. Ton N Schumacher
  18. Antoine Toubert
  19. Victor Appay
  20. Farhad Heshmati
  21. Robert Thimme
  22. Stanislas Pol
  23. Vincent Mallet
  24. Matthew L Albert
(2015)
Bystander hyperactivation of preimmune CD8+ T cells in chronic HCV patients
eLife 4:e07916.
https://doi.org/10.7554/eLife.07916

Share this article

https://doi.org/10.7554/eLife.07916

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Patsy R Tomlinson, Rachel G Knox ... Robert K Semple
    Research Article

    PIK3R1 encodes three regulatory subunits of class IA phosphoinositide 3-kinase (PI3K), each associating with any of three catalytic subunits, namely p110α, p110β, or p110δ. Constitutional PIK3R1 mutations cause diseases with a genotype-phenotype relationship not yet fully explained: heterozygous loss-of-function mutations cause SHORT syndrome, featuring insulin resistance and short stature attributed to reduced p110α function, while heterozygous activating mutations cause immunodeficiency, attributed to p110δ activation and known as APDS2. Surprisingly, APDS2 patients do not show features of p110α hyperactivation, but do commonly have SHORT syndrome-like features, suggesting p110α hypofunction. We sought to investigate this. In dermal fibroblasts from an APDS2 patient, we found no increased PI3K signalling, with p110δ expression markedly reduced. In preadipocytes, the APDS2 variant was potently dominant negative, associating with Irs1 and Irs2 but failing to heterodimerise with p110α. This attenuation of p110α signalling by a p110δ-activating PIK3R1 variant potentially explains co-incidence of gain-of-function and loss-of-function PIK3R1 phenotypes.

    1. Immunology and Inflammation
    Shih-Wen Huang, Yein-Gei Lai ... Nan-Shih Liao
    Research Article

    Natural killer (NK) cells can control metastasis through cytotoxicity and IFN-γ production independently of T cells in experimental metastasis mouse models. The inverse correlation between NK activity and metastasis incidence supports a critical role for NK cells in human metastatic surveillance. However, autologous NK cell therapy has shown limited benefit in treating patients with metastatic solid tumors. Using a spontaneous metastasis mouse model of MHC-I+ breast cancer, we found that transfer of IL-15/IL-12-conditioned syngeneic NK cells after primary tumor resection promoted long-term survival of mice with low metastatic burden and induced a tumor-specific protective T cell response that is essential for the therapeutic effect. Furthermore, NK cell transfer augments activation of conventional dendritic cells (cDCs), Foxp3-CD4+ T cells and stem cell-like CD8+ T cells in metastatic lungs, to which IFN-γ of the transferred NK cells contributes significantly. These results imply direct interactions between transferred NK cells and endogenous cDCs to enhance T cell activation. We conducted an investigator-initiated clinical trial of autologous NK cell therapy in six patients with advanced cancer and observed that the NK cell therapy was safe and showed signs of effectiveness. These findings indicate that autologous NK cell therapy is effective in treating established low burden metastases of MHC-I+ tumor cells by activating the cDC-T cell axis at metastatic sites.