Functional effects of distinct innervation styles of pyramidal cells by fast spiking cortical interneurons

  1. Yoshiyuki Kubota  Is a corresponding author
  2. Satoru Kondo
  3. Masaki Nomura
  4. Sayuri Hatada
  5. Noboru Yamaguchi
  6. Alsayed A Mohamed
  7. Fuyuki Karube
  8. Joachim Lübke
  9. Yasuo Kawaguchi
  1. National Institute for Physiological Sciences, Japan
  2. Japan Science and Technology Agency, Japan
  3. Kyoto University, Japan
  4. Research Centre Jülich, Germany

Abstract

Inhibitory interneurons target precise membrane regions on pyramidal cells, but differences in their functional effects on somata, dendrites and spines remain unclear. We analyzed inhibitory synaptic events induced by cortical, fast-spiking (FS) basket cells which innervate dendritic shafts and spines as well as pyramidal cell somata. Serial electron micrographs (EMgs) reconstruction showed that somatic synapses were larger than dendritic contacts. Simulations with precise anatomical and physiological data reveal functional differences between different innervation styles. FS cell soma-targeting synapses initiate a strong, global inhibition, those on shafts inhibit more restricted dendritic zones, while synapses on spines may mediate a strictly local veto. Thus, FS cell synapses of different sizes and sites provide functionally diverse forms of pyramidal cell inhibition.

Article and author information

Author details

  1. Yoshiyuki Kubota

    Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki, Japan
    For correspondence
    yoshiy@nips.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
  2. Satoru Kondo

    Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Masaki Nomura

    Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Sayuri Hatada

    Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Noboru Yamaguchi

    Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Alsayed A Mohamed

    Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Fuyuki Karube

    Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Joachim Lübke

    Institute for Neuroscience and Medicine, Research Centre Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Yasuo Kawaguchi

    Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki, Japan
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All surgical and animal care methods was performed in strict accordance with the Guidelines for the Use of Animals of IBRO and our institutional Animal Care and Use committee (National Institute for Physiological Sciences) with reference number 14A011. All surgery was performed under ketamine and xylazine, or isoflurane anesthesia, and every effort was made to minimize suffering.

Copyright

© 2015, Kubota et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,979
    views
  • 928
    downloads
  • 64
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yoshiyuki Kubota
  2. Satoru Kondo
  3. Masaki Nomura
  4. Sayuri Hatada
  5. Noboru Yamaguchi
  6. Alsayed A Mohamed
  7. Fuyuki Karube
  8. Joachim Lübke
  9. Yasuo Kawaguchi
(2015)
Functional effects of distinct innervation styles of pyramidal cells by fast spiking cortical interneurons
eLife 4:e07919.
https://doi.org/10.7554/eLife.07919

Share this article

https://doi.org/10.7554/eLife.07919

Further reading

    1. Neuroscience
    Masahiro Takigawa, Marta Huelin Gorriz ... Daniel Bendor
    Research Article

    During rest and sleep, memory traces replay in the brain. The dialogue between brain regions during replay is thought to stabilize labile memory traces for long-term storage. However, because replay is an internally-driven, spontaneous phenomenon, it does not have a ground truth - an external reference that can validate whether a memory has truly been replayed. Instead, replay detection is based on the similarity between the sequential neural activity comprising the replay event and the corresponding template of neural activity generated during active locomotion. If the statistical likelihood of observing such a match by chance is sufficiently low, the candidate replay event is inferred to be replaying that specific memory. However, without the ability to evaluate whether replay detection methods are successfully detecting true events and correctly rejecting non-events, the evaluation and comparison of different replay methods is challenging. To circumvent this problem, we present a new framework for evaluating replay, tested using hippocampal neural recordings from rats exploring two novel linear tracks. Using this two-track paradigm, our framework selects replay events based on their temporal fidelity (sequence-based detection), and evaluates the detection performance using each event's track discriminability, where sequenceless decoding across both tracks is used to quantify whether the track replaying is also the most likely track being reactivated.

    1. Neuroscience
    Kiichi Watanabe, Hui Chiu, David J Anderson
    Tools and Resources

    Monitoring neuronal activity at single-cell resolution in freely moving Drosophila engaged in social behaviors is challenging because of their small size and lack of transparency. Extant methods, such as Flyception, are highly invasive. Whole-brain calcium imaging in head-fixed, walking flies is feasible but the animals cannot perform the consummatory phases of social behaviors like aggression or mating under these conditions. This has left open the fundamental question of whether neurons identified as functionally important for such behaviors using loss- or gain-of-function screens are actually active during the natural performance of such behaviors, and if so during which phase(s). Here, we perform brain-wide mapping of active cells expressing the Immediate Early Gene hr38 using a high-sensitivity/low background fluorescence in situ hybridization (FISH) amplification method called HCR-3.0. Using double-labeling for hr38 mRNA and for GFP, we describe the activity of several classes of aggression-promoting neurons during courtship and aggression, including P1a cells, an intensively studied population of male-specific interneurons. Using HI-FISH in combination with optogenetic activation of aggression-promoting neurons (opto-HI-FISH), we identify candidate downstream functional targets of these cells in a brain-wide, unbiased manner. Finally, we compare the activity of P1a neurons during sequential performance of courtship and aggression, using intronic vs. exonic hr38 probes to differentiate newly synthesized nuclear transcripts from cytoplasmic transcripts synthesized at an earlier time. These data provide evidence suggesting that different subsets of P1a neurons may be active during courtship vs. aggression. HI-FISH and associated methods may help to fill an important lacuna in the armamentarium of tools for neural circuit analysis in Drosophila.