A simple retinal mechanism contributes to perceptual interactions between rod- and cone-mediated responses in primates

  1. William N Grimes
  2. Logan R Graves
  3. Mathew T Summers
  4. Fred Rieke  Is a corresponding author
  1. Howard Hughes Medical Institute, University of Washington, United States

Abstract

Visual perception across a broad range of light levels is shaped by interactions between rod- and cone-mediated signals. Because responses of retinal ganglion cells, the output cells of the retina, depend on signals from both rod and cone photoreceptors, interactions occurring in retinal circuits provide an opportunity to link the mechanistic operation of parallel pathways and perception. Here we show that rod- and cone-mediated responses interact nonlinearly to control the responses of primate retinal ganglion cells; these nonlinear interactions, surprisingly, were asymmetric, with rod responses strongly suppressing subsequent cone responses but not vice-versa. Human psychophysical experiments revealed a similar perceptual asymmetry. Nonlinear interactions in the retinal output cells were well-predicted by linear summation of kinetically-distinct rod- and cone-mediated signals followed by a synaptic nonlinearity. These experiments thus reveal how a simple mechanism controlling interactions between parallel pathways shapes circuit outputs and perception.

Article and author information

Author details

  1. William N Grimes

    Department of Physiology and Biophysics, Howard Hughes Medical Institute, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Logan R Graves

    Department of Physiology and Biophysics, Howard Hughes Medical Institute, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mathew T Summers

    Department of Physiology and Biophysics, Howard Hughes Medical Institute, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Fred Rieke

    Department of Physiology and Biophysics, Howard Hughes Medical Institute, University of Washington, Seattle, United States
    For correspondence
    rieke@u.washington.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Ethics

Animal experimentation: We obtained primate retinas (Macaca fascicularis, Macaca nemestrina and Macaca mulatta of either sex, ages 3-19 years) through the Tissue Distribution Program of the Regional Primate Research Center. All protocols were approved by the Institutional Animal Care and Use Committee at the University of Washington (protocol 4140-01).

Human subjects: The experimental protocol was approved by the Institutional Review Board of the University of Washington (protocol 16934) and was in accordance with the Declaration of Helsinki. All subjects gave informed consent in writing before participating in the experiment.

Version history

  1. Received: April 10, 2015
  2. Accepted: June 21, 2015
  3. Accepted Manuscript published: June 22, 2015 (version 1)
  4. Version of Record published: July 8, 2015 (version 2)

Copyright

© 2015, Grimes et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,218
    views
  • 352
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. William N Grimes
  2. Logan R Graves
  3. Mathew T Summers
  4. Fred Rieke
(2015)
A simple retinal mechanism contributes to perceptual interactions between rod- and cone-mediated responses in primates
eLife 4:e08033.
https://doi.org/10.7554/eLife.08033

Share this article

https://doi.org/10.7554/eLife.08033

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.