Conformational change of Dishevelled plays a key regulatory role in the Wnt signaling pathways

  1. Ho-Jin Lee
  2. De-Li Shi
  3. Jie J Zheng  Is a corresponding author
  1. St. Jude Children's Research Hospital, United States
  2. Sorbonne Universités, France

Abstract

The intracellular signaling molecule Dishevelled (Dvl) mediates canonical and non-canonical Wnt signaling via its PDZ domain. Different pathways diverge at this point by a mechanism that remains unclear. Here we show that the peptide-binding pocket of the Dvl PDZ domain can be occupied by Dvl's own highly conserved C-terminus, inducing a closed conformation. In Xenopus, Wnt-regulated convergent extension (CE) is readily affected by Dvl mutants unable to form the closed conformation than by wild-type Dvl. We also demonstrate that while Dvl cooperates with other Wnt pathway elements to activate canonical Wnt signaling, the open conformation of Dvl more effectively activates Jun N-terminal kinase (JNK). These results suggest that together with other players in the Wnt signaling pathway, the conformational change of Dvl regulates Wnt stimulated JNK activity in the non-canonical Wnt signaling.

Article and author information

Author details

  1. Ho-Jin Lee

    Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. De-Li Shi

    Laboratoire de biologie du développement, Institut de Biologie Paris-Seine, Sorbonne Universités, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Jie J Zheng

    Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, United States
    For correspondence
    jzheng@jsei.ucla.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Jeremy Nathans, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, United States

Version history

  1. Received: April 15, 2015
  2. Accepted: August 21, 2015
  3. Accepted Manuscript published: August 22, 2015 (version 1)
  4. Version of Record published: September 22, 2015 (version 2)

Copyright

© 2015, Lee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,194
    views
  • 552
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ho-Jin Lee
  2. De-Li Shi
  3. Jie J Zheng
(2015)
Conformational change of Dishevelled plays a key regulatory role in the Wnt signaling pathways
eLife 4:e08142.
https://doi.org/10.7554/eLife.08142

Share this article

https://doi.org/10.7554/eLife.08142

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Amy H Andreotti, Volker Dötsch
    Editorial

    The articles in this special issue highlight how modern cellular, biochemical, biophysical and computational techniques are allowing deeper and more detailed studies of allosteric kinase regulation.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Samuel C Griffiths, Jia Tan ... Hsin-Yi Henry Ho
    Research Article Updated

    The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, brachydactyly B, and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.