First quantitative high-throughput screen in zebrafish identifies novel pathways for increasing pancreatic β-cell mass

  1. Guangliang Wang
  2. Surendra K Rajpurohit
  3. Fabien Delaspre
  4. Steven L Walker
  5. David T White
  6. Alexis Ceasrine
  7. Rejji Kuruvilla
  8. Ruo-jing Li
  9. Joong S Shim
  10. Jun O Liu
  11. Michael J Parsons
  12. Jeff S Mumm  Is a corresponding author
  1. Johns Hopkins University, United States
  2. Georgia Regents University, United States
  3. University of Macau, China

Abstract

Whole-organism chemical screening can circumvent bottlenecks that impede drug discovery. However, in vivo screens have not attained throughput capacities possible with in vitro assays. We therefore developed a method enabling in vivo high-throughput screening (HTS) in zebrafish, termed automated reporter quantification in vivo (ARQiv). Here, ARQiv was combined with robotics to fully actualize whole-organism HTS (ARQiv-HTS). In a primary screen, this platform quantified cell-specific fluorescent reporters in >500,000 transgenic zebrafish larvae to identify FDA-approved drugs that increased the number of insulin-producing β cells in the pancreas. Twenty-four drugs were confirmed as inducers of endocrine differentiation and/or stimulators of β-cell proliferation. Further, we discovered novel roles for NF-κB signaling in regulating endocrine differentiation and for serotonergic signaling in selectively stimulating β-cell proliferation. These studies demonstrate the power of ARQiv-HTS for drug discovery and provide unique insights into signaling pathways controlling β-cell mass, potential therapeutic targets for treating diabetes.

Article and author information

Author details

  1. Guangliang Wang

    McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  2. Surendra K Rajpurohit

    Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, United States
    Competing interests
    No competing interests declared.
  3. Fabien Delaspre

    McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  4. Steven L Walker

    Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, United States
    Competing interests
    No competing interests declared.
  5. David T White

    Wilmer Eye Institute, Johns Hopkins University, Augusta, United States
    Competing interests
    No competing interests declared.
  6. Alexis Ceasrine

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  7. Rejji Kuruvilla

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  8. Ruo-jing Li

    Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  9. Joong S Shim

    Faculty of Health Sciences, University of Macau, Macau, China
    Competing interests
    No competing interests declared.
  10. Jun O Liu

    Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  11. Michael J Parsons

    McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  12. Jeff S Mumm

    Wilmer Eye Institute, Johns Hopkins University, Baltimore, United States
    For correspondence
    jmumm3@jhmi.edu
    Competing interests
    Jeff S Mumm, acts as a consultant for, Luminomics Inc., a company which uses drug discovery techniques applied in thetext.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved animal care and use committee (ACUC) protocols of Johns Hopkins University and Georgia Regents University

Copyright

© 2015, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,534
    views
  • 1,272
    downloads
  • 84
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Guangliang Wang
  2. Surendra K Rajpurohit
  3. Fabien Delaspre
  4. Steven L Walker
  5. David T White
  6. Alexis Ceasrine
  7. Rejji Kuruvilla
  8. Ruo-jing Li
  9. Joong S Shim
  10. Jun O Liu
  11. Michael J Parsons
  12. Jeff S Mumm
(2015)
First quantitative high-throughput screen in zebrafish identifies novel pathways for increasing pancreatic β-cell mass
eLife 4:e08261.
https://doi.org/10.7554/eLife.08261

Share this article

https://doi.org/10.7554/eLife.08261

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Keva Li, Nicholas Tolman ... UK Biobank Eye and Vision Consortium
    Research Article

    A glaucoma polygenic risk score (PRS) can effectively identify disease risk, but some individuals with high PRS do not develop glaucoma. Factors contributing to this resilience remain unclear. Using 4,658 glaucoma cases and 113,040 controls in a cross-sectional study of the UK Biobank, we investigated whether plasma metabolites enhanced glaucoma prediction and if a metabolomic signature of resilience in high-genetic-risk individuals existed. Logistic regression models incorporating 168 NMR-based metabolites into PRS-based glaucoma assessments were developed, with multiple comparison corrections applied. While metabolites weakly predicted glaucoma (Area Under the Curve = 0.579), they offered marginal prediction improvement in PRS-only-based models (p=0.004). We identified a metabolomic signature associated with resilience in the top glaucoma PRS decile, with elevated glycolysis-related metabolites—lactate (p=8.8E-12), pyruvate (p=1.9E-10), and citrate (p=0.02)—linked to reduced glaucoma prevalence. These metabolites combined significantly modified the PRS-glaucoma relationship (Pinteraction = 0.011). Higher total resilience metabolite levels within the highest PRS quartile corresponded to lower glaucoma prevalence (Odds Ratiohighest vs. lowest total resilience metabolite quartile=0.71, 95% Confidence Interval = 0.64–0.80). As pyruvate is a foundational metabolite linking glycolysis to tricarboxylic acid cycle metabolism and ATP generation, we pursued experimental validation for this putative resilience biomarker in a human-relevant Mus musculus glaucoma model. Dietary pyruvate mitigated elevated intraocular pressure (p=0.002) and optic nerve damage (p<0.0003) in Lmx1bV265D mice. These findings highlight the protective role of pyruvate-related metabolism against glaucoma and suggest potential avenues for therapeutic intervention.

    1. Cell Biology
    2. Immunology and Inflammation
    Alejandro Rosell, Agata Adelajda Krygowska ... Esther Castellano Sanchez
    Research Article

    Macrophages are crucial in the body’s inflammatory response, with tightly regulated functions for optimal immune system performance. Our study reveals that the RAS–p110α signalling pathway, known for its involvement in various biological processes and tumourigenesis, regulates two vital aspects of the inflammatory response in macrophages: the initial monocyte movement and later-stage lysosomal function. Disrupting this pathway, either in a mouse model or through drug intervention, hampers the inflammatory response, leading to delayed resolution and the development of more severe acute inflammatory reactions in live models. This discovery uncovers a previously unknown role of the p110α isoform in immune regulation within macrophages, offering insight into the complex mechanisms governing their function during inflammation and opening new avenues for modulating inflammatory responses.