Multiple abiotic stimuli are integrated in the regulation of rice gene expression under field conditions

  1. Anne Plessis
  2. Christoph Hafemeister
  3. Olivia Wilkins
  4. Zennia Jean Gonzaga
  5. Rachel Sarah Meyer
  6. Inês Pires
  7. Christian Müller
  8. Endang M Septiningsih
  9. Richard Bonneau
  10. Michael Purugganan  Is a corresponding author
  1. Plymouth University, United Kingdom
  2. New York University, United States
  3. International Rice Research Institute, Philippines
  4. Simons Foundation, New York, United States
  5. Texas A&M University, United States

Abstract

Plants rely on transcriptional dynamics to respond to multiple climatic fluctuations and contexts in nature. We analyzed genome-wide gene expression patterns of rice (Oryza sativa) growing in rainfed and irrigated fields during two distinct tropical seasons and determined simple linear models that relate transcriptomic variation to climatic fluctuations. These models combine multiple environmental parameters to account for patterns of expression in the field of co-expressed gene clusters. We examined the correspondence of our environmental models between tropical and temperate field conditions, using previously published data. We found that field type and macroclimate had broad impacts on transcriptional responses to environmental fluctuations, especially for genes involved in photosynthesis and development. Nevertheless, variation in solar radiation and temperature at the timescale of hours had reproducible effects across environmental contexts. These results provide a basis for broad-based predictive modeling of plant gene expression in the field.

Article and author information

Author details

  1. Anne Plessis

    School of Biological Sciences, Plymouth University, Plymouth, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Christoph Hafemeister

    Department of Biology, Center for Genomics and Systems Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Olivia Wilkins

    Department of Biology, Center for Genomics and Systems Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Zennia Jean Gonzaga

    International Rice Research Institute, Metro Manila, Philippines
    Competing interests
    The authors declare that no competing interests exist.
  5. Rachel Sarah Meyer

    Department of Biology, Center for Genomics and Systems Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Inês Pires

    Department of Biology, Center for Genomics and Systems Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Christian Müller

    Simons Center for Data Analysis, Simons Foundation, New York, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Endang M Septiningsih

    Department of Soil and Crop Sciences, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Richard Bonneau

    Department of Biology, Center for Genomics and Systems Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Michael Purugganan

    Department of Biology, Center for Genomics and Systems Biology, New York University, New York, United States
    For correspondence
    mp132@nyu.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Daniel J Kliebenstein, University of California, Davis, Denmark

Version history

  1. Received: April 29, 2015
  2. Accepted: November 25, 2015
  3. Accepted Manuscript published: November 26, 2015 (version 1)
  4. Version of Record published: December 31, 2015 (version 2)

Copyright

© 2015, Plessis et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,737
    views
  • 812
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anne Plessis
  2. Christoph Hafemeister
  3. Olivia Wilkins
  4. Zennia Jean Gonzaga
  5. Rachel Sarah Meyer
  6. Inês Pires
  7. Christian Müller
  8. Endang M Septiningsih
  9. Richard Bonneau
  10. Michael Purugganan
(2015)
Multiple abiotic stimuli are integrated in the regulation of rice gene expression under field conditions
eLife 4:e08411.
https://doi.org/10.7554/eLife.08411

Share this article

https://doi.org/10.7554/eLife.08411

Further reading

    1. Computational and Systems Biology
    2. Medicine
    Zachary Shaffer, Roberto Romero ... Nardhy Gomez-Lopez
    Research Article

    Background:

    Preterm birth is the leading cause of neonatal morbidity and mortality worldwide. Most cases of preterm birth occur spontaneously and result from preterm labor with intact (spontaneous preterm labor [sPTL]) or ruptured (preterm prelabor rupture of membranes [PPROM]) membranes. The prediction of spontaneous preterm birth (sPTB) remains underpowered due to its syndromic nature and the dearth of independent analyses of the vaginal host immune response. Thus, we conducted the largest longitudinal investigation targeting vaginal immune mediators, referred to herein as the immunoproteome, in a population at high risk for sPTB.

    Methods:

    Vaginal swabs were collected across gestation from pregnant women who ultimately underwent term birth, sPTL, or PPROM. Cytokines, chemokines, growth factors, and antimicrobial peptides in the samples were quantified via specific and sensitive immunoassays. Predictive models were constructed from immune mediator concentrations.

    Results:

    Throughout uncomplicated gestation, the vaginal immunoproteome harbors a cytokine network with a homeostatic profile. Yet, the vaginal immunoproteome is skewed toward a pro-inflammatory state in pregnant women who ultimately experience sPTL and PPROM. Such an inflammatory profile includes increased monocyte chemoattractants, cytokines indicative of macrophage and T-cell activation, and reduced antimicrobial proteins/peptides. The vaginal immunoproteome has improved predictive value over maternal characteristics alone for identifying women at risk for early (<34 weeks) sPTB.

    Conclusions:

    The vaginal immunoproteome undergoes homeostatic changes throughout gestation and deviations from this shift are associated with sPTB. Furthermore, the vaginal immunoproteome can be leveraged as a potential biomarker for early sPTB, a subset of sPTB associated with extremely adverse neonatal outcomes.

    Funding:

    This research was conducted by the Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS) under contract HHSN275201300006C. ALT, KRT, and NGL were supported by the Wayne State University Perinatal Initiative in Maternal, Perinatal and Child Health.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Ardalan Naseri, Degui Zhi, Shaojie Zhang
    Research Article

    Runs of homozygosity (ROH) segments, contiguous homozygous regions in a genome were traditionally linked to families and inbred populations. However, a growing literature suggests that ROHs are ubiquitous in outbred populations. Still, most existing genetic studies of ROH in populations are limited to aggregated ROH content across the genome, which does not offer the resolution for mapping causal loci. This limitation is mainly due to a lack of methods for the efficient identification of shared ROH diplotypes. Here, we present a new method, ROH-DICE, to find large ROH diplotype clusters, sufficiently long ROHs shared by a sufficient number of individuals, in large cohorts. ROH-DICE identified over 1 million ROH diplotypes that span over 100 SNPs and are shared by more than 100 UK Biobank participants. Moreover, we found significant associations of clustered ROH diplotypes across the genome with various self-reported diseases, with the strongest associations found between the extended HLA region and autoimmune disorders. We found an association between a diplotype covering the HFE gene and hemochromatosis, even though the well-known causal SNP was not directly genotyped or imputed. Using a genome-wide scan, we identified a putative association between carriers of an ROH diplotype in chromosome 4 and an increase in mortality among COVID-19 patients (P-value=1.82×10-11). In summary, our ROH-DICE method, by calling out large ROH diplotypes in a large outbred population, enables further population genetics into the demographic history of large populations. More importantly, our method enables a new genome-wide mapping approach for finding disease-causing loci with multi-marker recessive effects at a population scale.