Viral dark matter and virus-host interactions resolved from publicly available microbial genomes

  1. Simon Roux
  2. Steven J Hallam
  3. Tanja Woyke
  4. Matthew B Sullivan  Is a corresponding author
  1. The Ohio State University, United States
  2. University of British Columbia, Canada
  3. U.S Department of Energy Joint Genome Institute, United States

Abstract

The ecological importance of viruses is now widely recognized, yet our limited knowledge of viral sequence space and virus-host interactions precludes accurate prediction of their roles and impacts. Here we mined publicly available bacterial and archaeal genomic datasets to identify 12,498 high‑confidence viral genomes linked to their microbial hosts. These data augment public datasets 10-fold, provide first viral sequences for 13 new bacterial phyla including ecologically abundant phyla, and help taxonomically identify 7-38% of 'unknown' sequence space in viromes. Genome- and network-based classification was largely consistent with accepted viral taxonomy and suggested that (i) 264 new viral genera were identified (doubling known genera) and (ii) cross-taxon genomic recombination is limited. Further analyses provided empirical data on extrachromosomal prophages and co‑infection prevalences, as well as evaluation of in silico virus-host linkage predictions. Together these findings illustrate the value of mining viral signal from microbial genomes.

Article and author information

Author details

  1. Simon Roux

    Department of Microbiology, The Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Steven J Hallam

    Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Tanja Woyke

    U.S Department of Energy Joint Genome Institute, Walnut Creek, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Matthew B Sullivan

    Department of Microbiology, The Ohio State University, Columbus, United States
    For correspondence
    mbsulli@email.arizona.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Richard A Neher, Max Planck Institute for Developmental Biology, Germany

Publication history

  1. Received: May 2, 2015
  2. Accepted: July 22, 2015
  3. Accepted Manuscript published: July 22, 2015 (version 1)
  4. Accepted Manuscript updated: August 4, 2015 (version 2)
  5. Version of Record published: August 12, 2015 (version 3)

Copyright

© 2015, Roux et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11,376
    Page views
  • 2,244
    Downloads
  • 273
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Simon Roux
  2. Steven J Hallam
  3. Tanja Woyke
  4. Matthew B Sullivan
(2015)
Viral dark matter and virus-host interactions resolved from publicly available microbial genomes
eLife 4:e08490.
https://doi.org/10.7554/eLife.08490

Further reading

    1. Ecology
    2. Epidemiology and Global Health
    Carolina Oliveira de Santana, Pieter Spealman, Gabriel G Perron
    Insight

    The global spread of antibiotic resistance could be due to a number of factors, and not just the overuse of antibiotics in agriculture and medicine as previously thought.

    1. Ecology
    2. Evolutionary Biology
    Naïma Madi, Daisy Chen ... Nandita R Garud
    Research Advance Updated

    How the ecological process of community assembly interacts with intra-species diversity and evolutionary change is a longstanding question. Two contrasting hypotheses have been proposed: Diversity Begets Diversity (DBD), in which taxa tend to become more diverse in already diverse communities, and Ecological Controls (EC), in which higher community diversity impedes diversification. Previously, using 16S rRNA gene amplicon data across a range of microbiomes, we showed a generally positive relationship between taxa diversity and community diversity at higher taxonomic levels, consistent with the predictions of DBD (Madi et al., 2020). However, this positive 'diversity slope' plateaus at high levels of community diversity. Here we show that this general pattern holds at much finer genetic resolution, by analyzing intra-species strain and nucleotide variation in static and temporally sampled metagenomes from the human gut microbiome. Consistent with DBD, both intra-species polymorphism and strain number were positively correlated with community Shannon diversity. Shannon diversity is also predictive of increases in polymorphism over time scales up to ~4-6 months, after which the diversity slope flattens and becomes negative – consistent with DBD eventually giving way to EC. Finally, we show that higher community diversity predicts gene loss at a future time point. This observation is broadly consistent with the Black Queen Hypothesis, which posits that genes with functions provided by the community are less likely to be retained in a focal species' genome. Together, our results show that a mixture of DBD, EC, and Black Queen may operate simultaneously in the human gut microbiome, adding to a growing body of evidence that these eco-evolutionary processes are key drivers of biodiversity and ecosystem function.