1. Ecology
  2. Genetics and Genomics
Download icon

Viral dark matter and virus-host interactions resolved from publicly available microbial genomes

  1. Simon Roux
  2. Steven J Hallam
  3. Tanja Woyke
  4. Matthew B Sullivan  Is a corresponding author
  1. The Ohio State University, United States
  2. University of British Columbia, Canada
  3. U.S Department of Energy Joint Genome Institute, United States
Tools and Resources
  • Cited 184
  • Views 10,643
  • Annotations
Cite this article as: eLife 2015;4:e08490 doi: 10.7554/eLife.08490


The ecological importance of viruses is now widely recognized, yet our limited knowledge of viral sequence space and virus-host interactions precludes accurate prediction of their roles and impacts. Here we mined publicly available bacterial and archaeal genomic datasets to identify 12,498 high‑confidence viral genomes linked to their microbial hosts. These data augment public datasets 10-fold, provide first viral sequences for 13 new bacterial phyla including ecologically abundant phyla, and help taxonomically identify 7-38% of 'unknown' sequence space in viromes. Genome- and network-based classification was largely consistent with accepted viral taxonomy and suggested that (i) 264 new viral genera were identified (doubling known genera) and (ii) cross-taxon genomic recombination is limited. Further analyses provided empirical data on extrachromosomal prophages and co‑infection prevalences, as well as evaluation of in silico virus-host linkage predictions. Together these findings illustrate the value of mining viral signal from microbial genomes.

Article and author information

Author details

  1. Simon Roux

    Department of Microbiology, The Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Steven J Hallam

    Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Tanja Woyke

    U.S Department of Energy Joint Genome Institute, Walnut Creek, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Matthew B Sullivan

    Department of Microbiology, The Ohio State University, Columbus, United States
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Richard A Neher, Max Planck Institute for Developmental Biology, Germany

Publication history

  1. Received: May 2, 2015
  2. Accepted: July 22, 2015
  3. Accepted Manuscript published: July 22, 2015 (version 1)
  4. Accepted Manuscript updated: August 4, 2015 (version 2)
  5. Version of Record published: August 12, 2015 (version 3)


© 2015, Roux et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 10,643
    Page views
  • 2,024
  • 184

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Ecology
    Corey J A Bradshaw et al.
    Research Article

    The causes of Sahul's megafauna extinctions remain uncertain, although several interacting factors were likely responsible. To examine the relative support for hypotheses regarding plausible ecological mechanisms underlying these extinctions, we constructed the first stochastic, age-structured models for 13 extinct megafauna species from five functional/taxonomic groups, as well as eight extant species within these groups for comparison. Perturbing specific demographic rates individually, we tested which species were more demographically susceptible to extinction, and then compared these relative sensitivities to the fossil-derived extinction chronology. Our models show that the macropodiformes were the least demographically susceptible to extinction, followed by carnivores, monotremes, vombatiform herbivores, and large birds. Five of the eight extant species were as or more susceptible than the extinct species. There was no clear relationship between extinction susceptibility and the extinction chronology for any perturbation scenario, while body mass and generation length explained much of the variation in relative risk. Our results reveal that the actual mechanisms leading to the observed extinction chronology were unlikely related to variation in demographic susceptibility per se, but were possibly driven instead by finer-scale variation in climate change and/or human prey choice and relative hunting success.

    1. Ecology
    Cameron Wagg et al.
    Research Article

    Theoretical and empirical advances have revealed the importance of biodiversity for stabilizing ecosystem functions through time. Despite the global degradation of soils, whether the loss of soil microbial diversity can destabilize ecosystem functioning is poorly understood. Here, we experimentally quantified the contribution of soil fungal and bacterial communities to the temporal stability of four key ecosystem functions related to biogeochemical cycling. Microbial diversity enhanced the temporal stability of all ecosystem functions and this pattern was particularly strong in plant-soil mesocosms with reduced microbial richness where over 50% of microbial taxa were lost. The stabilizing effect of soil biodiversity was linked to asynchrony among microbial taxa whereby different soil fungi and bacteria promoted different ecosystem functions at different times. Our results emphasize the need to conserve soil biodiversity for the provisioning of multiple ecosystem functions that soils provide to the society.