1. Computational and Systems Biology
  2. Evolutionary Biology
Download icon

The evolution of adhesiveness as a social adaptation

  1. Thomas Garcia  Is a corresponding author
  2. Guilhem Doulcier
  3. Silvia De Monte
  1. Universit´e Pierre et Marie Curie, France
  2. École Normale Supérieure, France
Research Article
  • Cited 16
  • Views 1,437
  • Annotations
Cite this article as: eLife 2015;4:e08595 doi: 10.7554/eLife.08595

Abstract

Cellular adhesion is a key ingredient to sustain collective functions of microbial aggregates. Here, we investigate the evolutionary origins of adhesion and the emergence of groups of genealogically unrelated cells with a game-theoretical model. The considered adhesiveness trait is costly, continuous and affects both group formation and group-derived benefits. The formalism of adaptive dynamics reveals two evolutionary stable strategies, at each extreme on the axis of adhesiveness. We show that cohesive groups can evolve by small mutational steps, provided the population is already endowed with a minimum adhesiveness level. Assortment between more adhesive types, and in particular differential propensities to leave a fraction of individuals ungrouped, can compensate for the cost of increased adhesiveness. We also discuss the change in the social nature of more adhesive mutations along evolutionary trajectories, and find that altruism arises before directly beneficial behavior, despite being the most challenging form of cooperation.

Article and author information

Author details

  1. Thomas Garcia

    Institut d'´ecologie et des sciences de l'environnement, Universit´e Pierre et Marie Curie, Paris, France
    For correspondence
    t_garcia99@yahoo.fr
    Competing interests
    The authors declare that no competing interests exist.
  2. Guilhem Doulcier

    Institut de Biologie de l'´Ecole Normale Sup´erieure, École Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Silvia De Monte

    Institut de Biologie de l'´Ecole Normale Sup´erieure, École Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Arne Traulsen, Max Planck Institute for Evolutionary Biology, Germany

Publication history

  1. Received: May 7, 2015
  2. Accepted: November 26, 2015
  3. Accepted Manuscript published: November 27, 2015 (version 1)
  4. Version of Record published: February 22, 2016 (version 2)

Copyright

© 2015, Garcia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,437
    Page views
  • 367
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    Taraneh Zarin et al.
    Research Advance Updated

    In previous work, we showed that intrinsically disordered regions (IDRs) of proteins contain sequence-distributed molecular features that are conserved over evolution, despite little sequence similarity that can be detected in alignments (Zarin et al., 2019). Here, we aim to use these molecular features to predict specific biological functions for individual IDRs and identify the molecular features within them that are associated with these functions. We find that the predictable functions are diverse. Examining the associated molecular features, we note some that are consistent with previous reports and identify others that were previously unknown. We experimentally confirm that elevated isoelectric point and hydrophobicity, features that are positively associated with mitochondrial localization, are necessary for mitochondrial targeting function. Remarkably, increasing isoelectric point in a synthetic IDR restores weak mitochondrial targeting. We believe feature analysis represents a new systematic approach to understand how biological functions of IDRs are specified by their protein sequences.

    1. Cancer Biology
    2. Computational and Systems Biology
    Kenichi Shimada et al.
    Tools and Resources Updated

    Individual cancers rely on distinct essential genes for their survival. The Cancer Dependency Map (DepMap) is an ongoing project to uncover these gene dependencies in hundreds of cancer cell lines. To make this drug discovery resource more accessible to the scientific community, we built an easy-to-use browser, shinyDepMap (https://labsyspharm.shinyapps.io/depmap). shinyDepMap combines CRISPR and shRNA data to determine, for each gene, the growth reduction caused by knockout/knockdown and the selectivity of this effect across cell lines. The tool also clusters genes with similar dependencies, revealing functional relationships. shinyDepMap can be used to (1) predict the efficacy and selectivity of drugs targeting particular genes; (2) identify maximally sensitive cell lines for testing a drug; (3) target hop, that is, navigate from an undruggable protein with the desired selectivity profile, such as an activated oncogene, to more druggable targets with a similar profile; and (4) identify novel pathways driving cancer cell growth and survival.