1. Biochemistry and Chemical Biology
Download icon

Imaging and energetics of single SSB-ssDNA molecules reveal intramolecular condensation and insight into RecOR function

  1. Jason C Bell
  2. Bian Liu
  3. Stephen C Kowalczykowski  Is a corresponding author
  1. University of California, Davis, United States
Research Article
  • Cited 28
  • Views 2,257
  • Annotations
Cite this article as: eLife 2015;4:e08646 doi: 10.7554/eLife.08646


Escherichia coli single-stranded DNA (ssDNA) binding protein (SSB) is the defining bacterial member of ssDNA binding proteins essential for DNA maintenance. SSB binds ssDNA with a variable footprint of ~30-70 nucleotides, reflecting partial or full wrapping of ssDNA around a tetramer of SSB. We directly imaged single molecules of SSB-coated ssDNA using total internal reflection fluorescence (TIRF) microscopy and observed intramolecular condensation of nucleoprotein complexes exceeding expectations based on simple wrapping transitions. We further examined this unexpected property by single-molecule force spectroscopy using magnetic tweezers. In conditions favoring complete wrapping, SSB engages in long-range reversible intramolecular interactions resulting in condensation of the SSB-ssDNA complex. RecO and RecOR, which interact with SSB, further condensed the complex. Our data support the idea that RecOR--and possibly other SSB interacting proteins--function(s) in part to alter long-range, macroscopic interactions between or throughout nucleoprotein complexes by microscopically altering wrapping and bridging distant sites.

Article and author information

Author details

  1. Jason C Bell

    Graduate Group in Biochemistry and Molecular Biology, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  2. Bian Liu

    Graduate Group in Biophysics, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  3. Stephen C Kowalczykowski

    Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, United States
    For correspondence
    Competing interests
    Stephen C Kowalczykowski, Reviewing editor, eLife.

Reviewing Editor

  1. Michael R Botchan, University of California, Berkeley, United States

Publication history

  1. Received: May 11, 2015
  2. Accepted: September 18, 2015
  3. Accepted Manuscript published: September 18, 2015 (version 1)
  4. Version of Record published: November 25, 2015 (version 2)


© 2015, Bell et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 2,257
    Page views
  • 465
  • 28

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Zachary F Mandell et al.
    Research Article

    NusA and NusG are transcription factors that stimulate RNA polymerase pausing in Bacillus subtilis. While NusA was known to function as an intrinsic termination factor in B. subtilis, the role of NusG in this process was unknown. To examine the individual and combinatorial roles that NusA and NusG play in intrinsic termination, Term-seq was conducted in wild type, NusA depletion, DnusG, and NusA depletion DnusG strains. We determined that NusG functions as an intrinsic termination factor that works alone and cooperatively with NusA to facilitate termination at 88% of the 1400 identified intrinsic terminators. Our results indicate that NusG stimulates a sequence-specific pause that assists in the completion of suboptimal terminator hairpins with weak terminal A-U and G-U base pairs at the bottom of the stem. Loss of NusA and NusG leads to global misregulation of gene expression and loss of NusG results in flagella and swimming motility defects.

    1. Biochemistry and Chemical Biology
    Vidyasiri Vemulapalli et al.
    Research Article Updated

    SHP2 is a protein tyrosine phosphatase that normally potentiates intracellular signaling by growth factors, antigen receptors, and some cytokines, yet is frequently mutated in human cancer. Here, we examine the role of SHP2 in the responses of breast cancer cells to EGF by monitoring phosphoproteome dynamics when SHP2 is allosterically inhibited by SHP099. The dynamics of phosphotyrosine abundance at more than 400 tyrosine residues reveal six distinct response signatures following SHP099 treatment and washout. Remarkably, in addition to newly identified substrate sites on proteins such as occludin, ARHGAP35, and PLCγ2, another class of sites shows reduced phosphotyrosine abundance upon SHP2 inhibition. Sites of decreased phospho-abundance are enriched on proteins with two nearby phosphotyrosine residues, which can be directly protected from dephosphorylation by the paired SH2 domains of SHP2 itself. These findings highlight the distinct roles of the scaffolding and catalytic activities of SHP2 in effecting a transmembrane signaling response.