Attenuation of AMPK signaling by ROQUIN promotes T follicular helper cell formation

  1. Roybel R Ramiscal  Is a corresponding author
  2. Ian A Parish
  3. Robert S Lee-Young
  4. Jeffrey J Babon
  5. Julianna Blagih
  6. Alvin Pratama
  7. Jaime Martin
  8. Naomi Hawley
  9. Jean Y Cappello
  10. Pablo F Nieto
  11. Julia Ellyard
  12. Nadia J Kershaw
  13. Rebecca A Sweet
  14. Christopher C Goodnow
  15. Russell G Jones
  16. Mark A Febbraio
  17. Carola Vinuesa
  18. Vicki Athanasopoulos
  1. Australian National University, Australia
  2. Baker IDI Heart and Diabetes Institute, Australia
  3. Walter and Eliza Hall Institute of Medical Research, Australia
  4. McGill University, Canada

Abstract

T follicular helper cells (Tfh) are critical for the longevity and quality of antibody-mediated protection against infection. Yet few signaling pathways have been identified to be unique solely to Tfh development. ROQUIN is a post-transcriptional repressor of T cells, acting through its ROQ domain to destabilize mRNA targets important for Th1, Th17 and Tfh biology. Here, we report that ROQUIN has a paradoxical function on Tfh differentiation mediated by its RING domain: mice with a T cell-specific deletion of the ROQUIN RING domain have unchanged Th1, Th2, Th17 and Tregs during a T-dependent response, but show a profoundly defective antigen-specific Tfh compartment. ROQUIN RING signaling directly antagonized the catalytic α1 subunit of Adenosine Monophosphate-activated Protein Kinase (AMPK), a central stress-responsive regulator of cellular metabolism and mTOR signaling, which is known to facilitate T-dependent humoral immunity. We therefore unexpectedly uncover a ROQUIN-AMPK metabolic signaling nexus essential for selectively promoting Tfh responses.

Article and author information

Author details

  1. Roybel R Ramiscal

    Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
    For correspondence
    roy.ramiscal@anu.edu.au
    Competing interests
    The authors declare that no competing interests exist.
  2. Ian A Parish

    Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Robert S Lee-Young

    Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Jeffrey J Babon

    Division of Structural Biology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Julianna Blagih

    Goodman Cancer Research Centre, Department of Physiology, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Alvin Pratama

    Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Jaime Martin

    Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Naomi Hawley

    Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Jean Y Cappello

    Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Pablo F Nieto

    Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  11. Julia Ellyard

    Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  12. Nadia J Kershaw

    Division of Structural Biology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  13. Rebecca A Sweet

    Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  14. Christopher C Goodnow

    Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  15. Russell G Jones

    Goodman Cancer Research Centre, Department of Physiology, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  16. Mark A Febbraio

    Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  17. Carola Vinuesa

    Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  18. Vicki Athanasopoulos

    Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Animal experiments were approved by the Animal Experimentation Ethics Committee of the Australian National University (Protocols J.IG.71.08 and A2012/05) and the McGill University Ethics Committee (Protocol 7259). Mice were maintained in a specific germ-free environment.

Copyright

© 2015, Ramiscal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,540
    views
  • 635
    downloads
  • 54
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Roybel R Ramiscal
  2. Ian A Parish
  3. Robert S Lee-Young
  4. Jeffrey J Babon
  5. Julianna Blagih
  6. Alvin Pratama
  7. Jaime Martin
  8. Naomi Hawley
  9. Jean Y Cappello
  10. Pablo F Nieto
  11. Julia Ellyard
  12. Nadia J Kershaw
  13. Rebecca A Sweet
  14. Christopher C Goodnow
  15. Russell G Jones
  16. Mark A Febbraio
  17. Carola Vinuesa
  18. Vicki Athanasopoulos
(2015)
Attenuation of AMPK signaling by ROQUIN promotes T follicular helper cell formation
eLife 4:e08698.
https://doi.org/10.7554/eLife.08698

Share this article

https://doi.org/10.7554/eLife.08698

Further reading

    1. Cell Biology
    Tomoharu Kanie, Roy Ng ... Peter K Jackson
    Research Article

    The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of ciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures ciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for the ciliary vesicle recruitment, but not for other steps of cilium formation (Tomoharu Kanie, Love, Fisher, Gustavsson, & Jackson, 2023). The lack of a membrane binding motif in CEP89 suggests that it may indirectly recruit ciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and a ciliary vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similarly to CEP89 knockouts, ciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the ciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing a myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing properly to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the ciliary vesicles.

    1. Cell Biology
    Ling Cheng, Ian Meliala ... Mikael Björklund
    Research Article

    Mitochondrial dysfunction is involved in numerous diseases and the aging process. The integrated stress response (ISR) serves as a critical adaptation mechanism to a variety of stresses, including those originating from mitochondria. By utilizing mass spectrometry-based cellular thermal shift assay (MS-CETSA), we uncovered that phosphatidylethanolamine-binding protein 1 (PEBP1), also known as Raf kinase inhibitory protein (RKIP), is thermally stabilized by stresses which induce mitochondrial ISR. Depletion of PEBP1 impaired mitochondrial ISR activation by reducing eukaryotic translation initiation factor 2α (eIF2α) phosphorylation and subsequent ISR gene expression, which was independent of PEBP1’s role in inhibiting the RAF/MEK/ERK pathway. Consistently, overexpression of PEBP1 potentiated ISR activation by heme-regulated inhibitor (HRI) kinase, the principal eIF2α kinase in the mitochondrial ISR pathway. Real-time interaction analysis using luminescence complementation in live cells revealed an interaction between PEBP1 and eIF2α, which was disrupted by eIF2α S51 phosphorylation. These findings suggest a role for PEBP1 in amplifying mitochondrial stress signals, thereby facilitating an effective cellular response to mitochondrial dysfunction. Therefore, PEBP1 may be a potential therapeutic target for diseases associated with mitochondrial dysfunction.