Endothelial Ca2+ oscillations reflect VEGFR signaling-regulated angiogenic capacity in vivo

  1. Yasuhiro Yokota
  2. Hiroyuki Nakajima
  3. Yuki Wakayama
  4. Akira Muto
  5. Koichi Kawakami
  6. Shigetomo Fukuhara
  7. Naoki Mochizuki  Is a corresponding author
  1. National Cerebral and Cardiovascular Cener, Japan
  2. National Cerebral and Cardiovascular Center, Japan
  3. Graduate University for Advanced Studies, Japan
  4. National Institute of Genetics,, Japan

Abstract

Sprouting angiogenesis is a well-coordinated process controlled by multiple extracellular inputs, including vascular endothelial growth factor (VEGF). However, little is known about when and how individual endothelial cell (EC) responds to angiogenic inputs in vivo. Here, we visualized endothelial Ca2+ dynamics in zebrafish and found that intracellular Ca2+ oscillations occurred in ECs exhibiting angiogenic behavior. Ca2+ oscillations depended upon Vegfr2 and Vegfr3 in ECs budding from the dorsal aorta (DA) and posterior cardinal vein, respectively. Thus, visualizing Ca2+ oscillations allowed us to monitor EC responses to angiogenic cues. Vegfr-dependent Ca2+ oscillations occurred in migrating tip cells as well as stalk cells budding from the DA. We investigated how Dll4/Notch signaling regulates endothelial Ca2+ oscillations and found that it was required for the selection of single stalk cell as well as tip cell. Thus, we captured spatio-temporal Ca2+ dynamics during sprouting angiogenesis, as a result of cellular responses to angiogenic inputs.

Article and author information

Author details

  1. Yasuhiro Yokota

    Department of Cell Biology, National Cerebral and Cardiovascular Cener, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Hiroyuki Nakajima

    Department of Cell Biology, National Cerebral and Cardiovascular Center, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Yuki Wakayama

    Department of Cell Biology, National Cerebral and Cardiovascular Center, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Akira Muto

    Division of Molecular and Developmental Biology, National Institute of Genetics, Department of Genetics, Graduate University for Advanced Studies, Mishima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Koichi Kawakami

    Division of Molecular and Developmental Biology, National Institute of Genetics, Department of Genetics, National Institute of Genetics,, Mishima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Shigetomo Fukuhara

    Department of Cell Biology, National Cerebral and Cardiovascular Center, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Naoki Mochizuki

    Department of Cell Biology, National Cerebral and Cardiovascular Center, Suita, Japan
    For correspondence
    nmochizu@ri.ncvc.go.jp
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Animal experimentation: The experiments using zebrafish were approved by the animal committee of National Cerebral and Cardiovascular Center (No. 14005) and performed according to the guidance of the Institute.

Copyright

© 2015, Yokota et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,194
    views
  • 965
    downloads
  • 87
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yasuhiro Yokota
  2. Hiroyuki Nakajima
  3. Yuki Wakayama
  4. Akira Muto
  5. Koichi Kawakami
  6. Shigetomo Fukuhara
  7. Naoki Mochizuki
(2015)
Endothelial Ca2+ oscillations reflect VEGFR signaling-regulated angiogenic capacity in vivo
eLife 4:e08817.
https://doi.org/10.7554/eLife.08817

Share this article

https://doi.org/10.7554/eLife.08817

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Anne-Sophie Pepin, Patrycja A Jazwiec ... Sarah Kimmins
    Research Article Updated

    Paternal obesity has been implicated in adult-onset metabolic disease in offspring. However, the molecular mechanisms driving these paternal effects and the developmental processes involved remain poorly understood. One underexplored possibility is the role of paternally induced effects on placenta development and function. To address this, we investigated paternal high-fat diet-induced obesity in relation to sperm histone H3 lysine 4 tri-methylation signatures, the placenta transcriptome, and cellular composition. C57BL6/J male mice were fed either a control or high-fat diet for 10 weeks beginning at 6 weeks of age. Males were timed-mated with control-fed C57BL6/J females to generate pregnancies, followed by collection of sperm, and placentas at embryonic day (E)14.5. Chromatin immunoprecipitation targeting histone H3 lysine 4 tri-methylation (H3K4me3) followed by sequencing (ChIP-seq) was performed on sperm to define obesity-associated changes in enrichment. Paternal obesity corresponded with altered sperm H3K4me3 at promoters of genes involved in metabolism and development. Notably, altered sperm H3K4me3 was also localized at placental enhancers. Bulk RNA-sequencing on placentas revealed paternal obesity-associated sex-specific changes in expression of genes involved in hypoxic processes such as angiogenesis, nutrient transport, and imprinted genes, with a subset of de-regulated genes showing changes in H3K4me3 in sperm at corresponding promoters. Paternal obesity was also linked to impaired placenta development; specifically, a deconvolution analysis revealed altered trophoblast cell lineage specification. These findings implicate paternal obesity effects on placenta development and function as one potential developmental route to offspring metabolic disease.

    1. Developmental Biology
    Emily Delgouffe, Samuel Madureira Silva ... Ellen Goossens
    Research Article

    Although the impact of gender-affirming hormone therapy (GAHT) on spermatogenesis in trans women has already been studied, data on its precise effects on the testicular environment is poor. Therefore, this study aimed to characterize, through histological and transcriptomic analysis, the spermatogonial stem cell niche of 106 trans women who underwent standardized GAHT, comprising estrogens and cyproterone acetate. A partial dedifferentiation of Sertoli cells was observed, marked by the co-expression of androgen receptor and anti-Müllerian hormone which mirrors the situation in peripubertal boys. The Leydig cells also exhibited a distribution analogous to peripubertal tissue, accompanied by a reduced insulin-like factor 3 expression. Although most peritubular myoid cells expressed alpha-smooth muscle actin 2, the expression pattern was disturbed. Besides this, fibrosis was particularly evident in the tubular wall and the lumen was collapsing in most participants. A spermatogenic arrest was also observed in all participants. The transcriptomic profile of transgender tissue confirmed a loss of mature characteristics - a partial rejuvenation - of the spermatogonial stem cell niche and, in addition, detected inflammation processes occurring in the samples. The present study shows that GAHT changes the spermatogonial stem cell niche by partially rejuvenating the somatic cells and inducing fibrotic processes. These findings are important to further understand how estrogens and testosterone suppression affect the testis environment, and in the case of orchidectomized testes as medical waste material, their potential use in research.