A mitochondria-anchored isoform of the actin-nucleating Spire protein regulates mitochondrial division

  1. Uri Manor
  2. Sadie Bartholomew
  3. Gonen Golani
  4. Eric Christenson
  5. Michael Kozlov
  6. Henry Higgs
  7. James Spudich
  8. Jennifer Lippincott-Schwartz  Is a corresponding author
  1. Eunice Kennedy Shriver National Institute of Child Health and Human Development, United States
  2. Stanford University School of Medicine, United States
  3. Tel Aviv University, Israel
  4. Geisel School of Medicine, United States

Abstract

Mitochondrial division, essential for survival in mammals, is enhanced by an inter-organellar process involving ER tubules encircling and constricting mitochondria. The force for constriction is thought to involve actin polymerization by the ER-anchored isoform of the formin protein INF2. Unknown is the mechanism triggering INF2-mediated actin polymerization at ER-mitochondria intersections. We show that a novel isoform of the formin-binding, actin-nucleating protein Spire, Spire1C, localizes to mitochondria and directly links mitochondria to the actin cytoskeleton and the ER. Spire1C binds INF2 and promotes actin assembly on mitochondrial surfaces. Disrupting either Spire1C actin- or formin-binding activities reduces mitochondrial constriction and division. We propose Spire1C cooperates with INF2 to regulate actin assembly at ER-mitochondrial contacts. Simulations support this model's feasibility and demonstrate polymerizing actin filaments can induce mitochondrial constriction. Thus, Spire1C is optimally positioned to serve as a molecular hub that links mitochondria to actin and the ER for regulation of mitochondrial division.

Article and author information

Author details

  1. Uri Manor

    Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
    Competing interests
    No competing interests declared.
  2. Sadie Bartholomew

    Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  3. Gonen Golani

    Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    No competing interests declared.
  4. Eric Christenson

    Unit on Structural and Chemical Biology of Membrane Proteins, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
    Competing interests
    No competing interests declared.
  5. Michael Kozlov

    Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    Michael Kozlov, Reviewing editor, eLife.
  6. Henry Higgs

    Department of Biochemistry, Geisel School of Medicine, Hanover, United States
    Competing interests
    No competing interests declared.
  7. James Spudich

    Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  8. Jennifer Lippincott-Schwartz

    Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
    For correspondence
    lippincj@mail.nih.gov
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. Pekka Lappalainen, University of Helsinki, Finland

Version history

  1. Received: May 19, 2015
  2. Accepted: August 24, 2015
  3. Accepted Manuscript published: August 25, 2015 (version 1)
  4. Accepted Manuscript updated: September 2, 2015 (version 2)
  5. Version of Record published: September 18, 2015 (version 3)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 6,402
    Page views
  • 1,634
    Downloads
  • 216
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Uri Manor
  2. Sadie Bartholomew
  3. Gonen Golani
  4. Eric Christenson
  5. Michael Kozlov
  6. Henry Higgs
  7. James Spudich
  8. Jennifer Lippincott-Schwartz
(2015)
A mitochondria-anchored isoform of the actin-nucleating Spire protein regulates mitochondrial division
eLife 4:e08828.
https://doi.org/10.7554/eLife.08828

Share this article

https://doi.org/10.7554/eLife.08828

Further reading

    1. Cell Biology
    Kazuki Hanaoka, Kensuke Nishikawa ... Kouichi Funato
    Research Article

    Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)–plasma membrane (PM) and ER–Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus–vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.