Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation

  1. Katia Ancelin
  2. Laurène Syx
  3. Maud Borensztein
  4. Noémie Ranisavljevic
  5. Ivaylo Vassilev
  6. Luis Briseño-Roa
  7. Tao Liu
  8. Eric Metzger
  9. Nicolas Servant
  10. Emmanuel Barillot
  11. Chong-Jian Chen
  12. Roland Schüle
  13. Edith Heard  Is a corresponding author
  1. Institut Curie, France
  2. High Fidelity Biology, France
  3. Annoroad Gene Technology Co., Ltd, China
  4. Urologische Klinik und Zentrale Klinische Forschung, Germany

Abstract

Upon fertilization, the highly specialised sperm and oocyte genomes are remodelled to confer totipotency. The mechanisms of the dramatic reprogramming events that occur have remained unknown, and presumed roles of histone modifying enzymes are just starting to be elucidated. Here, we explore the function of the oocyte-inherited pool of a histone H3K4 and K9 demethylase, LSD1/KDM1A during early mouse development. KDM1A deficiency results in developmental arrest by the two-cell stage, accompanied by dramatic and stepwise alterations in H3K9 and H3K4 methylation patterns. At the transcriptional level, the switch of the maternal-to-zygotic transition fails to be induced properly and LINE-1 retrotransposons are not properly silenced. We propose that KDM1A plays critical roles in establishing the correct epigenetic landscape of the zygote upon fertilization, in preserving genome integrity and in initiating new patterns of genome expression that drive early mouse development.

Article and author information

Author details

  1. Katia Ancelin

    Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Laurène Syx

    Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Maud Borensztein

    Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Noémie Ranisavljevic

    Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Ivaylo Vassilev

    Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Luis Briseño-Roa

    High Fidelity Biology, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Tao Liu

    Annoroad Gene Technology Co., Ltd, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Eric Metzger

    Urologische Klinik und Zentrale Klinische Forschung, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Nicolas Servant

    Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Emmanuel Barillot

    Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Chong-Jian Chen

    Annoroad Gene Technology Co., Ltd, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Roland Schüle

    Urologische Klinik und Zentrale Klinische Forschung, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Edith Heard

    Institut Curie, Paris, France
    For correspondence
    Edith.Heard@curie.fr
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Anne C Ferguson-Smith, University of Cambridge, United Kingdom

Ethics

Animal experimentation: All mice used were handled with care and according to approved institutional animal care and use committee of the Institut Curie (CEEA-IC) protocols(C 75-05-18). The work has also been conducted under the approval from the French Ministry of Higher Education and Research for the use of Genetically Modified Organisms (agreement number 5549CA-I).

Version history

  1. Received: May 21, 2015
  2. Accepted: January 25, 2016
  3. Accepted Manuscript published: February 2, 2016 (version 1)
  4. Version of Record published: April 5, 2016 (version 2)

Copyright

© 2016, Ancelin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,463
    views
  • 1,324
    downloads
  • 94
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Katia Ancelin
  2. Laurène Syx
  3. Maud Borensztein
  4. Noémie Ranisavljevic
  5. Ivaylo Vassilev
  6. Luis Briseño-Roa
  7. Tao Liu
  8. Eric Metzger
  9. Nicolas Servant
  10. Emmanuel Barillot
  11. Chong-Jian Chen
  12. Roland Schüle
  13. Edith Heard
(2016)
Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation
eLife 5:e08851.
https://doi.org/10.7554/eLife.08851

Share this article

https://doi.org/10.7554/eLife.08851

Further reading

    1. Developmental Biology
    Siyuan Cheng, Ivan Fan Xia ... Stefania Nicoli
    Research Article

    Vascular smooth muscle cells (VSMCs) envelop vertebrate brain arteries and play a crucial role in regulating cerebral blood flow and neurovascular coupling. The dedifferentiation of VSMCs is implicated in cerebrovascular disease and neurodegeneration. Despite its importance, the process of VSMC differentiation on brain arteries during development remains inadequately characterized. Understanding this process could aid in reprogramming and regenerating dedifferentiated VSMCs in cerebrovascular diseases. In this study, we investigated VSMC differentiation on zebrafish circle of Willis (CoW), comprising major arteries that supply blood to the vertebrate brain. We observed that arterial specification of CoW endothelial cells (ECs) occurs after their migration from cranial venous plexus to form CoW arteries. Subsequently, acta2+ VSMCs differentiate from pdgfrb+ mural cell progenitors after they were recruited to CoW arteries. The progression of VSMC differentiation exhibits a spatiotemporal pattern, advancing from anterior to posterior CoW arteries. Analysis of blood flow suggests that earlier VSMC differentiation in anterior CoW arteries correlates with higher red blood cell velocity and wall shear stress. Furthermore, pulsatile flow induces differentiation of human brain PDGFRB+ mural cells into VSMCs, and blood flow is required for VSMC differentiation on zebrafish CoW arteries. Consistently, flow-responsive transcription factor klf2a is activated in ECs of CoW arteries prior to VSMC differentiation, and klf2a knockdown delays VSMC differentiation on anterior CoW arteries. In summary, our findings highlight blood flow activation of endothelial klf2a as a mechanism regulating initial VSMC differentiation on vertebrate brain arteries.

    1. Developmental Biology
    Zhimin Xu, Zhao Wang ... Yingchuan B Qi
    Research Article

    Precise developmental timing control is essential for organism formation and function, but its mechanisms are unclear. In C. elegans, the microRNA lin-4 critically regulates developmental timing by post-transcriptionally downregulating the larval-stage-fate controller LIN-14. However, the mechanisms triggering the activation of lin-4 expression toward the end of the first larval stage remain unknown. We demonstrate that the transmembrane transcription factor MYRF-1 is necessary for lin-4 activation. MYRF-1 is initially localized on the cell membrane, and its increased cleavage and nuclear accumulation coincide with lin-4 expression timing. MYRF-1 regulates lin-4 expression cell-autonomously and hyperactive MYRF-1 can prematurely drive lin-4 expression in embryos and young first-stage larvae. The tandem lin-4 promoter DNA recruits MYRF-1GFP to form visible loci in the nucleus, suggesting that MYRF-1 directly binds to the lin-4 promoter. Our findings identify a crucial link in understanding developmental timing regulation and establish MYRF-1 as a key regulator of lin-4 expression.