The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin

  1. Martina Brunati
  2. Simone Perucca
  3. Ling Han
  4. Angela Cattaneo
  5. Francesco Consolato
  6. Annapaola Andolfo
  7. Céline Schaeffer
  8. Eric Olinger
  9. Jianhao Peng
  10. Sara Santambrogio
  11. Romain Perrier
  12. Shuo Li
  13. Marcel Bokhove
  14. Angela Bachi
  15. Edith Hummler
  16. Olivier Devuyst
  17. Qingyu Wu
  18. Luca Jovine
  19. Luca Rampoldi  Is a corresponding author
  1. San Raffaele Scientific Institute, Italy
  2. Karolinska Institutet, Sweden
  3. University of Zurich, Switzerland
  4. Lerner Research Institute, United States
  5. University of Lausanne, Switzerland

Abstract

Uromodulin is the most abundant protein in the urine. It is exclusively produced by renal epithelial cells and it plays key roles in kidney function and disease. Uromodulin mainly exerts its function as an extracellular matrix whose assembly depends on a conserved, specific proteolytic cleavage leading to conformational activation of a Zona Pellucida (ZP) polymerisation domain. Through a comprehensive approach, including extensive characterisation of uromodulin processing in cellular models and in specific knock-out mice, we demonstrate that the membrane-bound serine protease hepsin is the enzyme responsible for the physiological cleavage of uromodulin. Our findings define a key aspect of uromodulin biology and identify the first in vivo substrate of hepsin. The identification of hepsin as the first protease involved in the release of a ZP domain protein is likely relevant for other members of this protein family including several extracellular proteins, as egg coat proteins and inner ear tectorins.

Article and author information

Author details

  1. Martina Brunati

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Simone Perucca

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Ling Han

    Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Angela Cattaneo

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Francesco Consolato

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Annapaola Andolfo

    Protein Microsequencing Facility, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Céline Schaeffer

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Eric Olinger

    Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Jianhao Peng

    Department of Molecular Cardiology, Lerner Research Institute, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Sara Santambrogio

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  11. Romain Perrier

    Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  12. Shuo Li

    Department of Molecular Cardiology, Lerner Research Institute, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Marcel Bokhove

    Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  14. Angela Bachi

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  15. Edith Hummler

    Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  16. Olivier Devuyst

    Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  17. Qingyu Wu

    Department of Molecular Cardiology, Lerner Research Institute, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Luca Jovine

    Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  19. Luca Rampoldi

    Division of Genetic and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    For correspondence
    rampoldi.luca@hsr.it
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal studies were performed in strict adherence with the NIH Guide for the Care and Use of Laboratory Animals. Experimental procedures and animal maintenance at the University of Lausanne followed federal guidelines and were approved by local authorities (Service de la consommation et des affaires vétérinaires, authorization numbers 1003.7 and 25520 for animal experimentation, and VD-H06 for animal housing). Animal studies at the University of Zurich were performed under the approval of the Swiss Cantonal Veterinary Authority (Number: 103/2014). The protocol was approved by the Institutional Animal Care and Use Committee (IACUC) of the Cleveland Clinic (Number: 2015-1403).

Copyright

© 2015, Brunati et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,561
    views
  • 592
    downloads
  • 97
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Martina Brunati
  2. Simone Perucca
  3. Ling Han
  4. Angela Cattaneo
  5. Francesco Consolato
  6. Annapaola Andolfo
  7. Céline Schaeffer
  8. Eric Olinger
  9. Jianhao Peng
  10. Sara Santambrogio
  11. Romain Perrier
  12. Shuo Li
  13. Marcel Bokhove
  14. Angela Bachi
  15. Edith Hummler
  16. Olivier Devuyst
  17. Qingyu Wu
  18. Luca Jovine
  19. Luca Rampoldi
(2015)
The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin
eLife 4:e08887.
https://doi.org/10.7554/eLife.08887

Share this article

https://doi.org/10.7554/eLife.08887

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Katherine A Senn, Karli A Lipinski ... Aaron A Hoskins
    Research Article

    Pre-mRNA splicing is catalyzed in two steps: 5ʹ splice site (SS) cleavage and exon ligation. A number of proteins transiently associate with spliceosomes to specifically impact these steps (first and second step factors). We recently identified Fyv6 (FAM192A in humans) as a second step factor in Saccharomyces cerevisiae; however, we did not determine how widespread Fyv6’s impact is on the transcriptome. To answer this question, we have used RNA sequencing (RNA-seq) to analyze changes in splicing. These results show that loss of Fyv6 results in activation of non-consensus, branch point (BP) proximal 3ʹ SS transcriptome-wide. To identify the molecular basis of these observations, we determined a high-resolution cryo-electron microscopy (cryo-EM) structure of a yeast product complex spliceosome containing Fyv6 at 2.3 Å. The structure reveals that Fyv6 is the only second step factor that contacts the Prp22 ATPase and that Fyv6 binding is mutually exclusive with that of the first step factor Yju2. We then use this structure to dissect Fyv6 functional domains and interpret results of a genetic screen for fyv6Δ suppressor mutations. The combined transcriptomic, structural, and genetic studies allow us to propose a model in which Yju2/Fyv6 exchange facilitates exon ligation and Fyv6 promotes usage of consensus, BP distal 3ʹ SS.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Eyal Paz, Sahil Jain ... Abdussalam Azem
    Research Article

    TIMM50, an essential TIM23 complex subunit, is suggested to facilitate the import of ~60% of the mitochondrial proteome. In this study, we characterized a TIMM50 disease-causing mutation in human fibroblasts and noted significant decreases in TIM23 core protein levels (TIMM50, TIMM17A/B, and TIMM23). Strikingly, TIMM50 deficiency had no impact on the steady-state levels of most of its putative substrates, suggesting that even low levels of a functional TIM23 complex are sufficient to maintain the majority of TIM23 complex-dependent mitochondrial proteome. As TIMM50 mutations have been linked to severe neurological phenotypes, we aimed to characterize TIMM50 defects in manipulated mammalian neurons. TIMM50 knockdown in mouse neurons had a minor effect on the steady state level of most of the mitochondrial proteome, supporting the results observed in patient fibroblasts. Amongst the few affected TIM23 substrates, a decrease in the steady state level of components of the intricate oxidative phosphorylation and mitochondrial ribosome complexes was evident. This led to declined respiration rates in fibroblasts and neurons, reduced cellular ATP levels, and defective mitochondrial trafficking in neuronal processes, possibly contributing to the developmental defects observed in patients with TIMM50 disease. Finally, increased electrical activity was observed in TIMM50 deficient mice neuronal cells, which correlated with reduced levels of KCNJ10 and KCNA2 plasma membrane potassium channels, likely underlying the patients’ epileptic phenotype.