The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin

  1. Martina Brunati
  2. Simone Perucca
  3. Ling Han
  4. Angela Cattaneo
  5. Francesco Consolato
  6. Annapaola Andolfo
  7. Céline Schaeffer
  8. Eric Olinger
  9. Jianhao Peng
  10. Sara Santambrogio
  11. Romain Perrier
  12. Shuo Li
  13. Marcel Bokhove
  14. Angela Bachi
  15. Edith Hummler
  16. Olivier Devuyst
  17. Qingyu Wu
  18. Luca Jovine
  19. Luca Rampoldi  Is a corresponding author
  1. San Raffaele Scientific Institute, Italy
  2. Karolinska Institutet, Sweden
  3. University of Zurich, Switzerland
  4. Lerner Research Institute, United States
  5. University of Lausanne, Switzerland

Abstract

Uromodulin is the most abundant protein in the urine. It is exclusively produced by renal epithelial cells and it plays key roles in kidney function and disease. Uromodulin mainly exerts its function as an extracellular matrix whose assembly depends on a conserved, specific proteolytic cleavage leading to conformational activation of a Zona Pellucida (ZP) polymerisation domain. Through a comprehensive approach, including extensive characterisation of uromodulin processing in cellular models and in specific knock-out mice, we demonstrate that the membrane-bound serine protease hepsin is the enzyme responsible for the physiological cleavage of uromodulin. Our findings define a key aspect of uromodulin biology and identify the first in vivo substrate of hepsin. The identification of hepsin as the first protease involved in the release of a ZP domain protein is likely relevant for other members of this protein family including several extracellular proteins, as egg coat proteins and inner ear tectorins.

Article and author information

Author details

  1. Martina Brunati

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Simone Perucca

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Ling Han

    Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Angela Cattaneo

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Francesco Consolato

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Annapaola Andolfo

    Protein Microsequencing Facility, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Céline Schaeffer

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Eric Olinger

    Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Jianhao Peng

    Department of Molecular Cardiology, Lerner Research Institute, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Sara Santambrogio

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  11. Romain Perrier

    Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  12. Shuo Li

    Department of Molecular Cardiology, Lerner Research Institute, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Marcel Bokhove

    Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  14. Angela Bachi

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  15. Edith Hummler

    Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  16. Olivier Devuyst

    Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  17. Qingyu Wu

    Department of Molecular Cardiology, Lerner Research Institute, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Luca Jovine

    Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  19. Luca Rampoldi

    Division of Genetic and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    For correspondence
    rampoldi.luca@hsr.it
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal studies were performed in strict adherence with the NIH Guide for the Care and Use of Laboratory Animals. Experimental procedures and animal maintenance at the University of Lausanne followed federal guidelines and were approved by local authorities (Service de la consommation et des affaires vétérinaires, authorization numbers 1003.7 and 25520 for animal experimentation, and VD-H06 for animal housing). Animal studies at the University of Zurich were performed under the approval of the Swiss Cantonal Veterinary Authority (Number: 103/2014). The protocol was approved by the Institutional Animal Care and Use Committee (IACUC) of the Cleveland Clinic (Number: 2015-1403).

Copyright

© 2015, Brunati et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,586
    views
  • 596
    downloads
  • 100
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Martina Brunati
  2. Simone Perucca
  3. Ling Han
  4. Angela Cattaneo
  5. Francesco Consolato
  6. Annapaola Andolfo
  7. Céline Schaeffer
  8. Eric Olinger
  9. Jianhao Peng
  10. Sara Santambrogio
  11. Romain Perrier
  12. Shuo Li
  13. Marcel Bokhove
  14. Angela Bachi
  15. Edith Hummler
  16. Olivier Devuyst
  17. Qingyu Wu
  18. Luca Jovine
  19. Luca Rampoldi
(2015)
The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin
eLife 4:e08887.
https://doi.org/10.7554/eLife.08887

Share this article

https://doi.org/10.7554/eLife.08887

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Stephanie M Stuteley, Ghader Bashiri
    Insight

    In the bacterium M. smegmatis, an enzyme called MftG allows the cofactor mycofactocin to transfer electrons released during ethanol metabolism to the electron transport chain.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Cristina Paissoni, Sarita Puri ... Carlo Camilloni
    Research Article

    Both immunoglobulin light-chain (LC) amyloidosis (AL) and multiple myeloma (MM) share the overproduction of a clonal LC. However, while LCs in MM remain soluble in circulation, AL LCs misfold into toxic-soluble species and amyloid fibrils that accumulate in organs, leading to distinct clinical manifestations. The significant sequence variability of LCs has hindered the understanding of the mechanisms driving LC aggregation. Nevertheless, emerging biochemical properties, including dimer stability, conformational dynamics, and proteolysis susceptibility, distinguish AL LCs from those in MM under native conditions. This study aimed to identify a2 conformational fingerprint distinguishing AL from MM LCs. Using small-angle X-ray scattering (SAXS) under native conditions, we analyzed four AL and two MM LCs. We observed that AL LCs exhibited a slightly larger radius of gyration and greater deviations from X-ray crystallography-determined or predicted structures, reflecting enhanced conformational dynamics. SAXS data, integrated with molecular dynamics simulations, revealed a conformational ensemble where LCs adopt multiple states, with variable and constant domains either bent or straight. AL LCs displayed a distinct, low-populated, straight conformation (termed H state), which maximized solvent accessibility at the interface between constant and variable domains. Hydrogen-deuterium exchange mass spectrometry experimentally validated this H state. These findings reconcile diverse experimental observations and provide a precise structural target for future drug design efforts.