The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin

  1. Martina Brunati
  2. Simone Perucca
  3. Ling Han
  4. Angela Cattaneo
  5. Francesco Consolato
  6. Annapaola Andolfo
  7. Céline Schaeffer
  8. Eric Olinger
  9. Jianhao Peng
  10. Sara Santambrogio
  11. Romain Perrier
  12. Shuo Li
  13. Marcel Bokhove
  14. Angela Bachi
  15. Edith Hummler
  16. Olivier Devuyst
  17. Qingyu Wu
  18. Luca Jovine
  19. Luca Rampoldi  Is a corresponding author
  1. San Raffaele Scientific Institute, Italy
  2. Karolinska Institutet, Sweden
  3. University of Zurich, Switzerland
  4. Lerner Research Institute, United States
  5. University of Lausanne, Switzerland

Abstract

Uromodulin is the most abundant protein in the urine. It is exclusively produced by renal epithelial cells and it plays key roles in kidney function and disease. Uromodulin mainly exerts its function as an extracellular matrix whose assembly depends on a conserved, specific proteolytic cleavage leading to conformational activation of a Zona Pellucida (ZP) polymerisation domain. Through a comprehensive approach, including extensive characterisation of uromodulin processing in cellular models and in specific knock-out mice, we demonstrate that the membrane-bound serine protease hepsin is the enzyme responsible for the physiological cleavage of uromodulin. Our findings define a key aspect of uromodulin biology and identify the first in vivo substrate of hepsin. The identification of hepsin as the first protease involved in the release of a ZP domain protein is likely relevant for other members of this protein family including several extracellular proteins, as egg coat proteins and inner ear tectorins.

Article and author information

Author details

  1. Martina Brunati

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Simone Perucca

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Ling Han

    Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Angela Cattaneo

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Francesco Consolato

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Annapaola Andolfo

    Protein Microsequencing Facility, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Céline Schaeffer

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Eric Olinger

    Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Jianhao Peng

    Department of Molecular Cardiology, Lerner Research Institute, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Sara Santambrogio

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  11. Romain Perrier

    Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  12. Shuo Li

    Department of Molecular Cardiology, Lerner Research Institute, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Marcel Bokhove

    Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  14. Angela Bachi

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  15. Edith Hummler

    Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  16. Olivier Devuyst

    Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  17. Qingyu Wu

    Department of Molecular Cardiology, Lerner Research Institute, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Luca Jovine

    Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  19. Luca Rampoldi

    Division of Genetic and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    For correspondence
    rampoldi.luca@hsr.it
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal studies were performed in strict adherence with the NIH Guide for the Care and Use of Laboratory Animals. Experimental procedures and animal maintenance at the University of Lausanne followed federal guidelines and were approved by local authorities (Service de la consommation et des affaires vétérinaires, authorization numbers 1003.7 and 25520 for animal experimentation, and VD-H06 for animal housing). Animal studies at the University of Zurich were performed under the approval of the Swiss Cantonal Veterinary Authority (Number: 103/2014). The protocol was approved by the Institutional Animal Care and Use Committee (IACUC) of the Cleveland Clinic (Number: 2015-1403).

Copyright

© 2015, Brunati et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,557
    views
  • 589
    downloads
  • 97
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Martina Brunati
  2. Simone Perucca
  3. Ling Han
  4. Angela Cattaneo
  5. Francesco Consolato
  6. Annapaola Andolfo
  7. Céline Schaeffer
  8. Eric Olinger
  9. Jianhao Peng
  10. Sara Santambrogio
  11. Romain Perrier
  12. Shuo Li
  13. Marcel Bokhove
  14. Angela Bachi
  15. Edith Hummler
  16. Olivier Devuyst
  17. Qingyu Wu
  18. Luca Jovine
  19. Luca Rampoldi
(2015)
The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin
eLife 4:e08887.
https://doi.org/10.7554/eLife.08887

Share this article

https://doi.org/10.7554/eLife.08887

Further reading

    1. Biochemistry and Chemical Biology
    2. Physics of Living Systems
    Debabrata Dey, Shir Marciano ... Gideon Schreiber
    Research Article

    For drugs to be active they have to reach their targets. Within cells this requires crossing the cell membrane, and then free diffusion, distribution, and availability. Here, we explored the in-cell diffusion rates and distribution of a series of small molecular fluorescent drugs, in comparison to proteins, by microscopy and fluorescence recovery after photobleaching (FRAP). While all proteins diffused freely, we found a strong correlation between pKa and the intracellular diffusion and distribution of small molecule drugs. Weakly basic, small-molecule drugs displayed lower fractional recovery after photobleaching and 10- to-20-fold slower diffusion rates in cells than in aqueous solutions. As, more than half of pharmaceutical drugs are weakly basic, they, are protonated in the cell cytoplasm. Protonation, facilitates the formation of membrane impermeable ionic form of the weak base small molecules. This results in ion trapping, further reducing diffusion rates of weakly basic small molecule drugs under macromolecular crowding conditions where other nonspecific interactions become more relevant and dominant. Our imaging studies showed that acidic organelles, particularly the lysosome, captured these molecules. Surprisingly, blocking lysosomal import only slightly increased diffusion rates and fractional recovery. Conversely, blocking protonation by N-acetylated analogues, greatly enhanced their diffusion and fractional recovery after FRAP. Based on these results, N-acetylation of small molecule drugs may improve the intracellular availability and distribution of weakly basic, small molecule drugs within cells.

    1. Biochemistry and Chemical Biology
    Zhe Zhang, Xu Hong ... Jian Zhan
    Research Article

    Despite their importance in a wide range of living organisms, self-cleaving ribozymes in the human genome are few and poorly studied. Here, we performed deep mutational scanning and covariance analysis of two previously proposed self-cleaving ribozymes (LINE-1 and OR4K15). We found that the regions essential for ribozyme activities are made of two short segments, with a total of 35 and 31 nucleotides only. The discovery makes them the simplest known self-cleaving ribozymes. Moreover, the essential regions are circular permutated with two nearly identical catalytic internal loops, supported by two stems of different lengths. These two self-cleaving ribozymes, which are shaped like lanterns, are similar to the catalytic regions of the twister sister ribozymes in terms of sequence and secondary structure. However, the nucleotides at the cleavage site have shown that mutational effects on two twister sister-like (TS-like) ribozymes are different from the twister sister ribozyme. The discovery of TS-like ribozymes reveals a ribozyme class with the simplest and, perhaps, the most primitive structure needed for self-cleavage.