Complex transcriptional regulation and independent evolution of fungal-like traits in a relative of animals
Abstract
Cell-type specification through differential genome regulation is a hallmark of complex multicellularity. However, it remains unclear how this process evolved during the transition from unicellular to multicellular organisms. To address this question, we investigated transcriptional dynamics in the ichthyosporean Creolimax fragrantissima, a relative of animals that undergoes coenocytic development. We find that Creolimax utilizes dynamic regulation of alternative splicing, long inter-genic non-coding RNAs and co-regulated gene modules associated with animal multicellularity in a cell-type specific manner. Moreover, our study suggests that the different cell types of the three closest animal relatives (ichthyosporeans, filastereans and choanoflagellates) are the product of lineage-specific innovations. Additionally, a proteomic survey of the secretome reveals adaptations to a fungal-like lifestyle. In summary, the diversity of cell types among protistan relatives of animals and their complex genome regulation demonstrates that the last unicellular ancestor of animals was already capable of elaborate specification of cell types.
Article and author information
Author details
Copyright
© 2015, de Mendoza et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,406
- views
-
- 896
- downloads
-
- 64
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
Accurate specification of female and male germ cells during embryonic development is critical for sexual reproduction. Primordial germ cells (PGCs) are the bipotential precursors of mature gametes that commit to an oogenic or spermatogenic fate in response to sex-determining cues from the fetal gonad. The critical processes required for PGCs to integrate and respond to signals from the somatic environment in gonads are not well understood. In this study, we developed the first single-nucleus multiomics map of chromatin accessibility and gene expression during murine PGC development in both XX and XY embryos. Profiling of cell-type-specific transcriptomes and regions of open chromatin from the same cell captured the molecular signatures and gene networks underlying PGC sex determination. Joint RNA and ATAC data for single PGCs resolved previously unreported PGC subpopulations and cataloged a multimodal reference atlas of differentiating PGC clusters. We discovered that regulatory element accessibility precedes gene expression during PGC development, suggesting that changes in chromatin accessibility may prime PGC lineage commitment prior to differentiation. Similarly, we found that sexual dimorphism in chromatin accessibility and gene expression increased temporally in PGCs. Combining single-nucleus sequencing data, we computationally mapped the cohort of transcription factors that regulate the expression of sexually dimorphic genes in PGCs. For example, the gene regulatory networks of XX PGCs are enriched for the transcription factors, TFAP2c, TCFL5, GATA2, MGA, NR6A1, TBX4, and ZFX. Sex-specific enrichment of the forkhead-box and POU6 families of transcription factors was also observed in XY PGCs. Finally, we determined the temporal expression patterns of WNT, BMP, and RA signaling during PGC sex determination, and our discovery analyses identified potentially new cell communication pathways between supporting cells and PGCs. Our results illustrate the diversity of factors involved in programming PGCs toward a sex-specific fate.
-
- Developmental Biology
- Neuroscience
During development axons undergo long-distance migrations as instructed by guidance molecules and their receptors, such as UNC-6/Netrin and UNC-40/DCC. Guidance cues act through long-range diffusive gradients (chemotaxis) or local adhesion (haptotaxis). However, how these discrete modes of action guide axons in vivo is poorly understood. Using time-lapse imaging of axon guidance in C. elegans, we demonstrate that UNC-6 and UNC-40 are required for local adhesion to an intermediate target and subsequent directional growth. Exogenous membrane-tethered UNC-6 is sufficient to mediate adhesion but not directional growth, demonstrating the separability of haptotaxis and chemotaxis. This conclusion is further supported by the endogenous UNC-6 distribution along the axon’s route. The intermediate and final targets are enriched in UNC-6 and separated by a ventrodorsal UNC-6 gradient. Continuous growth through the gradient requires UNC-40, which recruits UNC-6 to the growth cone tip. Overall, these data suggest that UNC-6 stimulates stepwise haptotaxis and chemotaxis in vivo.