1. Developmental Biology
  2. Evolutionary Biology
Download icon

Complex transcriptional regulation and independent evolution of fungal-like traits in a relative of animals

  1. Alex de Mendoza  Is a corresponding author
  2. Hiroshi Suga
  3. Jon Permanyer
  4. Manuel Irimia
  5. Iñaki Ruiz-Trillo
  1. The University of Western Australia, Australia
  2. Universitat Pompeu Fabra, Spain
  3. Centre for Genomic Regulation, Spain
Research Article
  • Cited 38
  • Views 4,260
  • Annotations
Cite this article as: eLife 2015;4:e08904 doi: 10.7554/eLife.08904

Abstract

Cell-type specification through differential genome regulation is a hallmark of complex multicellularity. However, it remains unclear how this process evolved during the transition from unicellular to multicellular organisms. To address this question, we investigated transcriptional dynamics in the ichthyosporean Creolimax fragrantissima, a relative of animals that undergoes coenocytic development. We find that Creolimax utilizes dynamic regulation of alternative splicing, long inter-genic non-coding RNAs and co-regulated gene modules associated with animal multicellularity in a cell-type specific manner. Moreover, our study suggests that the different cell types of the three closest animal relatives (ichthyosporeans, filastereans and choanoflagellates) are the product of lineage-specific innovations. Additionally, a proteomic survey of the secretome reveals adaptations to a fungal-like lifestyle. In summary, the diversity of cell types among protistan relatives of animals and their complex genome regulation demonstrates that the last unicellular ancestor of animals was already capable of elaborate specification of cell types.

Article and author information

Author details

  1. Alex de Mendoza

    ARC CoE Plant Energy Biology, The University of Western Australia, Crawley, Australia
    For correspondence
    alexmendozasoler@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Hiroshi Suga

    Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Jon Permanyer

    EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Manuel Irimia

    EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Iñaki Ruiz-Trillo

    Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Alejandro Sánchez Alvarado, Stowers Institute for Medical Research, United States

Publication history

  1. Received: May 21, 2015
  2. Accepted: October 13, 2015
  3. Accepted Manuscript published: October 14, 2015 (version 1)
  4. Version of Record published: January 21, 2016 (version 2)

Copyright

© 2015, de Mendoza et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,260
    Page views
  • 824
    Downloads
  • 38
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    2. Neuroscience
    Meike E van der Heijden et al.
    Research Article

    Preterm infants that suffer cerebellar insults often develop motor disorders and cognitive difficulty. Excitatory granule cells, the most numerous neuron type in the brain, are especially vulnerable and likely instigate disease by impairing the function of their targets, the Purkinje cells. Here, we use regional genetic manipulations and in vivo electrophysiology to test whether excitatory neurons establish the firing properties of Purkinje cells during postnatal mouse development. We generated mutant mice that lack the majority of excitatory cerebellar neurons and tracked the structural and functional consequences on Purkinje cells. We reveal that Purkinje cells fail to acquire their typical morphology and connectivity, and that the concomitant transformation of Purkinje cell firing activity does not occur either. We also show that our mutant pups have impaired motor behaviors and vocal skills. These data argue that excitatory cerebellar neurons define the maturation time-window for postnatal Purkinje cell functions and refine cerebellar-dependent behaviors.

    1. Developmental Biology
    2. Neuroscience
    Baruch Haimson et al.
    Research Article Updated

    Peripheral and intraspinal feedback is required to shape and update the output of spinal networks that execute motor behavior. We report that lumbar dI2 spinal interneurons in chicks receive synaptic input from afferents and premotor neurons. These interneurons innervate contralateral premotor networks in the lumbar and brachial spinal cord, and their ascending projections innervate the cerebellum. These findings suggest that dI2 neurons function as interneurons in local lumbar circuits, are involved in lumbo-brachial coupling, and that part of them deliver peripheral and intraspinal feedback to the cerebellum. Silencing of dI2 neurons leads to destabilized stepping in posthatching day 8 hatchlings, with occasional collapses, variable step profiles, and a wide-base walking gait, suggesting that dI2 neurons may contribute to the stabilization of the bipedal gait.