Dynamics and heterogeneity of a fate determinant during transition towards cell differentiation

  1. Nicolás Peláez
  2. Arnau Gavalda-Miralles
  3. Bao Wang
  4. Heliodoro Tejedor Navarro
  5. Herman Gudjonson
  6. Ilaria Rebay
  7. Aaron R Dinner
  8. Aggelos K Katsaggelos
  9. Luis AN Amaral
  10. Richard W Carthew  Is a corresponding author
  1. Northwestern University, United States
  2. Universitat Rovira i Virgili, United States
  3. Howard Hughes Medical Institute, Northwestern University, United States
  4. University of Chicago, United States

Abstract

Yan is an ETS-domain transcription factor responsible for maintaining Drosophila eye cells in a multipotent state. Using a fluorescent reporter for Yan expression, we observed a biphasic distribution of Yan in multipotent cells. Transitions to various differentiated states occurred over the course of this dynamic process, suggesting that Yan expression level does not strongly determine cell potential. Consistent with this conclusion, perturbing Yan expression by varying gene dosage had no effect on cell fate transitions. However, we observed that as cells transited to differentiation, Yan expression became highly heterogeneous and this heterogeneity was transient. Signals received via the EGF Receptor were necessary for the transience in Yan noise since genetic loss caused sustained noise. Since these signals are essential for eye cells to differentiate, we suggest that dynamic heterogeneity of Yan is a necessary element of the transition process, and cell states are stabilized through noise reduction.

Article and author information

Author details

  1. Nicolás Peláez

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Arnau Gavalda-Miralles

    Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Bao Wang

    Department Electrical Engineering and Computer Science, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Heliodoro Tejedor Navarro

    Department of Chemical and Biological Engineering, Howard Hughes Medical Institute, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Herman Gudjonson

    James Franck Institute, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ilaria Rebay

    Ben May Department for Cancer Research, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Aaron R Dinner

    James Franck Institute, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Aggelos K Katsaggelos

    Department Electrical Engineering and Computer Science, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Luis AN Amaral

    Department of Chemical and Biological Engineering, Howard Hughes Medical Institute, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Richard W Carthew

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    For correspondence
    r-carthew@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Naama Barkai, Weizmann Institute of Science, Israel

Publication history

  1. Received: May 22, 2015
  2. Accepted: November 18, 2015
  3. Accepted Manuscript published: November 19, 2015 (version 1)
  4. Version of Record published: January 13, 2016 (version 2)

Copyright

© 2015, Peláez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,377
    Page views
  • 766
    Downloads
  • 25
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicolás Peláez
  2. Arnau Gavalda-Miralles
  3. Bao Wang
  4. Heliodoro Tejedor Navarro
  5. Herman Gudjonson
  6. Ilaria Rebay
  7. Aaron R Dinner
  8. Aggelos K Katsaggelos
  9. Luis AN Amaral
  10. Richard W Carthew
(2015)
Dynamics and heterogeneity of a fate determinant during transition towards cell differentiation
eLife 4:e08924.
https://doi.org/10.7554/eLife.08924

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Zhe Chen, Garrett J Blair ... Hugh T Blair
    Tools and Resources

    Epifluorescence miniature microscopes ('miniscopes') are widely used for in vivo calcium imaging of neural population activity. Imaging data is typically collected during a behavioral task and stored for later offline analysis, but emerging techniques for online imaging can support novel closed-loop experiments in which neural population activity is decoded in real time to trigger neurostimulation or sensory feedback. To achieve short feedback latencies, online imaging systems must be optimally designed to maximize computational speed and efficiency while minimizing errors in population decoding. Here we introduce DeCalciOn, an open-source device for real-time imaging and population decoding of in vivo calcium signals that is hardware compatible with all miniscopes that use the UCLA Data Acquisition (DAQ) interface. DeCalciOn performs online motion stabilization, neural enhancement, calcium trace extraction, and decoding of up to 1024 traces per frame at latencies of <50 ms after fluorescence photons arrive at the miniscope image sensor. We show that DeCalciOn can accurately decode the position of rats (n=12) running on a linear track from calcium fluorescence in the hippocampal CA1 layer, and can categorically classify behaviors performed by rats (n=2) during an instrumental task from calcium fluorescence in orbitofrontal cortex (OFC). DeCalciOn achieves high decoding accuracy at short latencies using innovations such as field-programmable gate array (FPGA) hardware for real time image processing and contour-free methods to efficiently extract calcium traces from sensor images. In summary, our system offers an affordable plug-and-play solution for real-time calcium imaging experiments in behaving animals.

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Anastasia O Smirnova, Anna M Miroshnichenkova ... Alexander Komkov
    Tools and Resources

    High-throughput sequencing of adaptive immune receptor repertoires is a valuable tool for receiving insights in adaptive immunity studies. Several powerful TCR/BCR repertoire reconstruction and analysis methods have been developed in the past decade. However, detecting and correcting the discrepancy between real and experimentally observed lymphocyte clone frequencies is still challenging. Here we discovered a hallmark anomaly in the ratio between read count and clone count-based frequencies of non-functional clonotypes in multiplex PCR-based immune repertoires. Calculating this anomaly, we formulated a quantitative measure of V- and J-genes frequency bias driven by multiplex PCR during library preparation called Over Amplification Rate (OAR). Based on the OAR concept, we developed an original software for multiplex PCR-specific bias evaluation and correction named iROAR: Immune Repertoire Over Amplification Removal (https://github.com/smiranast/iROAR). The iROAR algorithm was successfully tested on previously published TCR repertoires obtained using both 5' RACE (Rapid Amplification of cDNA Ends)-based and multiplex PCR-based approaches and compared with a biological spike-in-based method for PCR bias evaluation. The developed approach can increase the accuracy and consistency of repertoires reconstructed by different methods making them more applicable for comparative analysis.