Dynamics and heterogeneity of a fate determinant during transition towards cell differentiation

  1. Nicolás Peláez
  2. Arnau Gavalda-Miralles
  3. Bao Wang
  4. Heliodoro Tejedor Navarro
  5. Herman Gudjonson
  6. Ilaria Rebay
  7. Aaron R Dinner
  8. Aggelos K Katsaggelos
  9. Luis AN Amaral
  10. Richard W Carthew  Is a corresponding author
  1. Northwestern University, United States
  2. Universitat Rovira i Virgili, United States
  3. Howard Hughes Medical Institute, Northwestern University, United States
  4. University of Chicago, United States

Abstract

Yan is an ETS-domain transcription factor responsible for maintaining Drosophila eye cells in a multipotent state. Using a fluorescent reporter for Yan expression, we observed a biphasic distribution of Yan in multipotent cells. Transitions to various differentiated states occurred over the course of this dynamic process, suggesting that Yan expression level does not strongly determine cell potential. Consistent with this conclusion, perturbing Yan expression by varying gene dosage had no effect on cell fate transitions. However, we observed that as cells transited to differentiation, Yan expression became highly heterogeneous and this heterogeneity was transient. Signals received via the EGF Receptor were necessary for the transience in Yan noise since genetic loss caused sustained noise. Since these signals are essential for eye cells to differentiate, we suggest that dynamic heterogeneity of Yan is a necessary element of the transition process, and cell states are stabilized through noise reduction.

Article and author information

Author details

  1. Nicolás Peláez

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Arnau Gavalda-Miralles

    Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Bao Wang

    Department Electrical Engineering and Computer Science, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Heliodoro Tejedor Navarro

    Department of Chemical and Biological Engineering, Howard Hughes Medical Institute, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Herman Gudjonson

    James Franck Institute, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ilaria Rebay

    Ben May Department for Cancer Research, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Aaron R Dinner

    James Franck Institute, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Aggelos K Katsaggelos

    Department Electrical Engineering and Computer Science, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Luis AN Amaral

    Department of Chemical and Biological Engineering, Howard Hughes Medical Institute, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Richard W Carthew

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    For correspondence
    r-carthew@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Peláez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,435
    views
  • 777
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicolás Peláez
  2. Arnau Gavalda-Miralles
  3. Bao Wang
  4. Heliodoro Tejedor Navarro
  5. Herman Gudjonson
  6. Ilaria Rebay
  7. Aaron R Dinner
  8. Aggelos K Katsaggelos
  9. Luis AN Amaral
  10. Richard W Carthew
(2015)
Dynamics and heterogeneity of a fate determinant during transition towards cell differentiation
eLife 4:e08924.
https://doi.org/10.7554/eLife.08924

Share this article

https://doi.org/10.7554/eLife.08924

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Gaetan De Waele, Gerben Menschaert, Willem Waegeman
    Research Article

    Timely and effective use of antimicrobial drugs can improve patient outcomes, as well as help safeguard against resistance development. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently routinely used in clinical diagnostics for rapid species identification. Mining additional data from said spectra in the form of antimicrobial resistance (AMR) profiles is, therefore, highly promising. Such AMR profiles could serve as a drop-in solution for drastically improving treatment efficiency, effectiveness, and costs. This study endeavors to develop the first machine learning models capable of predicting AMR profiles for the whole repertoire of species and drugs encountered in clinical microbiology. The resulting models can be interpreted as drug recommender systems for infectious diseases. We find that our dual-branch method delivers considerably higher performance compared to previous approaches. In addition, experiments show that the models can be efficiently fine-tuned to data from other clinical laboratories. MALDI-TOF-based AMR recommender systems can, hence, greatly extend the value of MALDI-TOF MS for clinical diagnostics. All code supporting this study is distributed on PyPI and is packaged at https://github.com/gdewael/maldi-nn.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Sanjarbek Hudaiberdiev, Ivan Ovcharenko
    Research Article

    Enhancers and promoters are classically considered to be bound by a small set of transcription factors (TFs) in a sequence-specific manner. This assumption has come under increasing skepticism as the datasets of ChIP-seq assays of TFs have expanded. In particular, high-occupancy target (HOT) loci attract hundreds of TFs with often no detectable correlation between ChIP-seq peaks and DNA-binding motif presence. Here, we used a set of 1003 TF ChIP-seq datasets (HepG2, K562, H1) to analyze the patterns of ChIP-seq peak co-occurrence in combination with functional genomics datasets. We identified 43,891 HOT loci forming at the promoter (53%) and enhancer (47%) regions. HOT promoters regulate housekeeping genes, whereas HOT enhancers are involved in tissue-specific process regulation. HOT loci form the foundation of human super-enhancers and evolve under strong negative selection, with some of these loci being located in ultraconserved regions. Sequence-based classification analysis of HOT loci suggested that their formation is driven by the sequence features, and the density of mapped ChIP-seq peaks across TF-bound loci correlates with sequence features and the expression level of flanking genes. Based on the affinities to bind to promoters and enhancers we detected five distinct clusters of TFs that form the core of the HOT loci. We report an abundance of HOT loci in the human genome and a commitment of 51% of all TF ChIP-seq binding events to HOT locus formation thus challenging the classical model of enhancer activity and propose a model of HOT locus formation based on the existence of large transcriptional condensates.