Dynamics and heterogeneity of a fate determinant during transition towards cell differentiation

  1. Nicolás Peláez
  2. Arnau Gavalda-Miralles
  3. Bao Wang
  4. Heliodoro Tejedor Navarro
  5. Herman Gudjonson
  6. Ilaria Rebay
  7. Aaron R Dinner
  8. Aggelos K Katsaggelos
  9. Luis AN Amaral
  10. Richard W Carthew  Is a corresponding author
  1. Northwestern University, United States
  2. Universitat Rovira i Virgili, United States
  3. Howard Hughes Medical Institute, Northwestern University, United States
  4. University of Chicago, United States

Abstract

Yan is an ETS-domain transcription factor responsible for maintaining Drosophila eye cells in a multipotent state. Using a fluorescent reporter for Yan expression, we observed a biphasic distribution of Yan in multipotent cells. Transitions to various differentiated states occurred over the course of this dynamic process, suggesting that Yan expression level does not strongly determine cell potential. Consistent with this conclusion, perturbing Yan expression by varying gene dosage had no effect on cell fate transitions. However, we observed that as cells transited to differentiation, Yan expression became highly heterogeneous and this heterogeneity was transient. Signals received via the EGF Receptor were necessary for the transience in Yan noise since genetic loss caused sustained noise. Since these signals are essential for eye cells to differentiate, we suggest that dynamic heterogeneity of Yan is a necessary element of the transition process, and cell states are stabilized through noise reduction.

Article and author information

Author details

  1. Nicolás Peláez

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Arnau Gavalda-Miralles

    Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Bao Wang

    Department Electrical Engineering and Computer Science, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Heliodoro Tejedor Navarro

    Department of Chemical and Biological Engineering, Howard Hughes Medical Institute, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Herman Gudjonson

    James Franck Institute, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ilaria Rebay

    Ben May Department for Cancer Research, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Aaron R Dinner

    James Franck Institute, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Aggelos K Katsaggelos

    Department Electrical Engineering and Computer Science, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Luis AN Amaral

    Department of Chemical and Biological Engineering, Howard Hughes Medical Institute, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Richard W Carthew

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    For correspondence
    r-carthew@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Peláez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,441
    views
  • 779
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicolás Peláez
  2. Arnau Gavalda-Miralles
  3. Bao Wang
  4. Heliodoro Tejedor Navarro
  5. Herman Gudjonson
  6. Ilaria Rebay
  7. Aaron R Dinner
  8. Aggelos K Katsaggelos
  9. Luis AN Amaral
  10. Richard W Carthew
(2015)
Dynamics and heterogeneity of a fate determinant during transition towards cell differentiation
eLife 4:e08924.
https://doi.org/10.7554/eLife.08924

Share this article

https://doi.org/10.7554/eLife.08924

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article Updated

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here, we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions—the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS)—while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal’s choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.