Dynamics and heterogeneity of a fate determinant during transition towards cell differentiation

  1. Nicolás Peláez
  2. Arnau Gavalda-Miralles
  3. Bao Wang
  4. Heliodoro Tejedor Navarro
  5. Herman Gudjonson
  6. Ilaria Rebay
  7. Aaron R Dinner
  8. Aggelos K Katsaggelos
  9. Luis AN Amaral
  10. Richard W Carthew  Is a corresponding author
  1. Northwestern University, United States
  2. Universitat Rovira i Virgili, United States
  3. Howard Hughes Medical Institute, Northwestern University, United States
  4. University of Chicago, United States

Abstract

Yan is an ETS-domain transcription factor responsible for maintaining Drosophila eye cells in a multipotent state. Using a fluorescent reporter for Yan expression, we observed a biphasic distribution of Yan in multipotent cells. Transitions to various differentiated states occurred over the course of this dynamic process, suggesting that Yan expression level does not strongly determine cell potential. Consistent with this conclusion, perturbing Yan expression by varying gene dosage had no effect on cell fate transitions. However, we observed that as cells transited to differentiation, Yan expression became highly heterogeneous and this heterogeneity was transient. Signals received via the EGF Receptor were necessary for the transience in Yan noise since genetic loss caused sustained noise. Since these signals are essential for eye cells to differentiate, we suggest that dynamic heterogeneity of Yan is a necessary element of the transition process, and cell states are stabilized through noise reduction.

Article and author information

Author details

  1. Nicolás Peláez

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Arnau Gavalda-Miralles

    Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Bao Wang

    Department Electrical Engineering and Computer Science, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Heliodoro Tejedor Navarro

    Department of Chemical and Biological Engineering, Howard Hughes Medical Institute, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Herman Gudjonson

    James Franck Institute, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ilaria Rebay

    Ben May Department for Cancer Research, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Aaron R Dinner

    James Franck Institute, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Aggelos K Katsaggelos

    Department Electrical Engineering and Computer Science, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Luis AN Amaral

    Department of Chemical and Biological Engineering, Howard Hughes Medical Institute, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Richard W Carthew

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    For correspondence
    r-carthew@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Peláez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,438
    views
  • 778
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicolás Peláez
  2. Arnau Gavalda-Miralles
  3. Bao Wang
  4. Heliodoro Tejedor Navarro
  5. Herman Gudjonson
  6. Ilaria Rebay
  7. Aaron R Dinner
  8. Aggelos K Katsaggelos
  9. Luis AN Amaral
  10. Richard W Carthew
(2015)
Dynamics and heterogeneity of a fate determinant during transition towards cell differentiation
eLife 4:e08924.
https://doi.org/10.7554/eLife.08924

Share this article

https://doi.org/10.7554/eLife.08924

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Cesare V Parise, Marc O Ernst
    Research Article

    Audiovisual information reaches the brain via both sustained and transient input channels, representing signals’ intensity over time or changes thereof, respectively. To date, it is unclear to what extent transient and sustained input channels contribute to the combined percept obtained through multisensory integration. Based on the results of two novel psychophysical experiments, here we demonstrate the importance of the transient (instead of the sustained) channel for the integration of audiovisual signals. To account for the present results, we developed a biologically inspired, general-purpose model for multisensory integration, the multisensory correlation detectors, which combines correlated input from unimodal transient channels. Besides accounting for the results of our psychophysical experiments, this model could quantitatively replicate several recent findings in multisensory research, as tested against a large collection of published datasets. In particular, the model could simultaneously account for the perceived timing of audiovisual events, multisensory facilitation in detection tasks, causality judgments, and optimal integration. This study demonstrates that several phenomena in multisensory research that were previously considered unrelated, all stem from the integration of correlated input from unimodal transient channels.

    1. Computational and Systems Biology
    Franck Simon, Maria Colomba Comes ... Herve Isambert
    Tools and Resources

    Live-cell microscopy routinely provides massive amounts of time-lapse images of complex cellular systems under various physiological or therapeutic conditions. However, this wealth of data remains difficult to interpret in terms of causal effects. Here, we describe CausalXtract, a flexible computational pipeline that discovers causal and possibly time-lagged effects from morphodynamic features and cell–cell interactions in live-cell imaging data. CausalXtract methodology combines network-based and information-based frameworks, which is shown to discover causal effects overlooked by classical Granger and Schreiber causality approaches. We showcase the use of CausalXtract to uncover novel causal effects in a tumor-on-chip cellular ecosystem under therapeutically relevant conditions. In particular, we find that cancer-associated fibroblasts directly inhibit cancer cell apoptosis, independently from anticancer treatment. CausalXtract uncovers also multiple antagonistic effects at different time delays. Hence, CausalXtract provides a unique computational tool to interpret live-cell imaging data for a range of fundamental and translational research applications.