1. Structural Biology and Molecular Biophysics
  2. Computational and Systems Biology
Download icon

Codon-level information improves predictions of inter-residue contacts in proteins by correlated mutation analysis

  1. Etai Jacob
  2. Ron Unger
  3. Amnon Horovitz  Is a corresponding author
  1. Bar-Ilan University, Israel
  2. Weizmann Institute of Science, Israel
Research Article
  • Cited 6
  • Views 2,932
  • Annotations
Cite this article as: eLife 2015;4:e08932 doi: 10.7554/eLife.08932

Abstract

Methods for analysing correlated mutations in proteins are becoming an increasingly powerful tool for predicting contacts within and between proteins. Nevertheless, limitations remain due to the requirement for large multiple sequence alignments (MSA) and the fact that, in general, only the relatively small number of top-ranking predictions are reliable. To date, methods for analysing correlated mutations have relied exclusively on amino acid MSAs as inputs. Here, we describe a new approach for analysing correlated mutations that is based on combined analysis of amino acid and codon MSAs. We show that a direct contact is more likely to be present when the correlation between the positions is strong at the amino acid level but weak at the codon level. The performance of different methods for analysing correlated mutations in predicting contacts is shown to be enhanced significantly when amino acid and codon data are combined.

Article and author information

Author details

  1. Etai Jacob

    The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Ron Unger

    The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Amnon Horovitz

    Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    Amnon.Horovitz@weizmann.ac.il
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Michael Levitt, Stanford University, United States

Publication history

  1. Received: May 22, 2015
  2. Accepted: September 13, 2015
  3. Accepted Manuscript published: September 15, 2015 (version 1)
  4. Accepted Manuscript updated: September 25, 2015 (version 2)
  5. Version of Record published: October 13, 2015 (version 3)

Copyright

© 2015, Jacob et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,932
    Page views
  • 582
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jing Li et al.
    Research Article

    Integrin conformational ensembles contain two low-affinity states, bent-closed and extended-closed, and an active, high-affinity, extended-open state. It is widely thought that integrins must be activated before they bind ligand; however, one model holds that activation follows ligand binding. As ligand-binding kinetics are not only rate limiting for cell adhesion but also have important implications for the mechanism of activation, we measure them here for integrins α4β1 and α5β1 and show that the low-affinity states bind substantially faster than the high-affinity state. On and off-rates are similar for integrins on cell surfaces and as ectodomain fragments. Although the extended-open conformation's on-rate is ~20-fold slower, its off-rate is ~25,000-fold slower, resulting in a large affinity increase. The tighter ligand-binding pocket in the open state may slow its on-rate. Low affinity integrin states not only bind ligand more rapidly, but are also more populous on the cell surface than high affinity states. Thus, our results suggest that integrin binding to ligand may precede, rather than follow, activation by 'inside-out signaling'.

    1. Computational and Systems Biology
    2. Structural Biology and Molecular Biophysics
    Cathrine Bergh et al.
    Research Article Updated

    Ligand-gated ion channels conduct currents in response to chemical stimuli, mediating electrochemical signaling in neurons and other excitable cells. For many channels, the details of gating remain unclear, partly due to limited structural data and simulation timescales. Here, we used enhanced sampling to simulate the pH-gated channel GLIC, and construct Markov state models (MSMs) of gating. Consistent with new functional recordings, we report in oocytes, our analysis revealed differential effects of protonation and mutation on free-energy wells. Clustering of closed- versus open-like states enabled estimation of open probabilities and transition rates, while higher-order clustering affirmed conformational trends in gating. Furthermore, our models uncovered state- and protonation-dependent symmetrization. This demonstrates the applicability of MSMs to map energetic and conformational transitions between ion-channel functional states, and how they reproduce shifts upon activation or mutation, with implications for modeling neuronal function and developing state-selective drugs.