Human blindsight is mediated by an intact geniculo-extrastriate pathway

  1. Sara Ajina
  2. Franco Pestilli
  3. Ariel Rokem
  4. Christopher Kennard
  5. Holly Bridge  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. Indiana University, United States
  3. Stanford University, United States

Abstract

Although damage to the primary visual cortex (V1) causes hemianopia, many patients retain some residual vision; known as blindsight. We show that blindsight may be facilitated by an intact white-matter pathway between the lateral geniculate nucleus and motion area hMT+. Visual psychophysics, diffusion-weighted magnetic resonance imaging and fibre tractography were applied in 17 patients with V1 damage acquired during adulthood and 9 age-matched controls. Individuals with V1 damage were subdivided into blindsight positive (preserved residual vision) and negative (no residual vision) according to psychophysical performance. All blindsight positive individuals showed intact geniculo-hMT+ pathways, while this pathway was significantly impaired or not measurable in blindsight negative individuals. Two white matter pathways previously implicated in blindsight; (i) superior colliculus to hMT+ and (ii) between hMT+ in each hemisphere were not consistently present in blindsight positive cases. Understanding the visual pathways crucial for residual vision may direct future rehabilitation strategies for hemianopia patients.

Article and author information

Author details

  1. Sara Ajina

    Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Franco Pestilli

    Department of Psychological and Brain Sciences, Programs in Neuroscience and Cognitive Science, Indiana University Network Science Institute, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ariel Rokem

    Department of Psychology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Christopher Kennard

    Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Holly Bridge

    Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
    For correspondence
    holly.bridge@ndcn.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: Ethical approval was provided by the Oxfordshire Research Ethics Committee B (Ref B08/H0605/156). All participants gave informed, written consent.

Copyright

© 2015, Ajina et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,144
    views
  • 803
    downloads
  • 115
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sara Ajina
  2. Franco Pestilli
  3. Ariel Rokem
  4. Christopher Kennard
  5. Holly Bridge
(2015)
Human blindsight is mediated by an intact geniculo-extrastriate pathway
eLife 4:e08935.
https://doi.org/10.7554/eLife.08935

Share this article

https://doi.org/10.7554/eLife.08935