Distinct mechanisms define murine B cell lineage immunoglobulin heavy chain (IgH) repertoires

  1. Yang Yang  Is a corresponding author
  2. Chunlin Wang
  3. Qunying Yang
  4. Aaron B Kantor
  5. Hiutung Chu
  6. Eliver EB Ghosn
  7. Guang Qin
  8. Sarkis K Mazmanian
  9. Jian Han
  10. Leonore A Herzenberg
  1. Stanford University, United States
  2. HudsonAlpha Institute for Biotechnology, United States
  3. California Institute of Technology, United States

Abstract

Processes that define immunoglobulin repertoires are commonly presumed to be the same for all murine B cells. However, studies here that couple high-dimensional FACS sorting with large-scale quantitative IgH deep-sequencing demonstrate that B-1a IgH repertoire differs dramatically from the follicular and marginal zone B cells repertoires and is defined by distinct mechanisms. We track B-1a cells from their early appearance in neonatal spleen to their long-term residence in adult peritoneum and spleen. We show that de novo B-1a IgH rearrangement mainly occurs during the first few weeks of life, after which their repertoire continues to evolve profoundly, including convergent selection of certain V(D)J rearrangements encoding specific CDR3 peptides in all adults and progressive introduction of hypermutation and class-switching as animals age. This V(D)J selection and AID-mediated diversification operate comparably in germ-free and conventional mice, indicating these unique B-1a repertoire-defining mechanisms are driven by antigens that are not derived from microbiota.

Article and author information

Author details

  1. Yang Yang

    Genetics Department, Stanford University, Stanford, United States
    For correspondence
    yang71@stanford.edu
    Competing interests
    No competing interests declared.
  2. Chunlin Wang

    HudsonAlpha Institute for Biotechnology, Huntsville, United States
    Competing interests
    Chunlin Wang, founder of iRepertoire.
  3. Qunying Yang

    HudsonAlpha Institute for Biotechnology, Huntsville, United States
    Competing interests
    No competing interests declared.
  4. Aaron B Kantor

    Genetics Department, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  5. Hiutung Chu

    Biology and Biological Engineering Department, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  6. Eliver EB Ghosn

    Genetics Department, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  7. Guang Qin

    Genetics Department, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  8. Sarkis K Mazmanian

    Biology and Biological Engineering Department, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  9. Jian Han

    HudsonAlpha Institute for Biotechnology, Huntsville, United States
    Competing interests
    Jian Han, founder of iRepertoire.
  10. Leonore A Herzenberg

    Genetics Department, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.

Copyright

© 2015, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,245
    views
  • 1,207
    downloads
  • 118
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yang Yang
  2. Chunlin Wang
  3. Qunying Yang
  4. Aaron B Kantor
  5. Hiutung Chu
  6. Eliver EB Ghosn
  7. Guang Qin
  8. Sarkis K Mazmanian
  9. Jian Han
  10. Leonore A Herzenberg
(2015)
Distinct mechanisms define murine B cell lineage immunoglobulin heavy chain (IgH) repertoires
eLife 4:e09083.
https://doi.org/10.7554/eLife.09083

Share this article

https://doi.org/10.7554/eLife.09083

Further reading

    1. Cell Biology
    Jingjing Li, Xinyue Wang ... Vincent Archambault
    Research Article

    In animals, mitosis involves the breakdown of the nucleus. The reassembly of a nucleus after mitosis requires the reformation of the nuclear envelope around a single mass of chromosomes. This process requires Ankle2 (also known as LEM4 in humans) which interacts with PP2A and promotes the function of the Barrier-to-Autointegration Factor (BAF). Upon dephosphorylation, BAF dimers cross-bridge chromosomes and bind lamins and transmembrane proteins of the reassembling nuclear envelope. How Ankle2 functions in mitosis is incompletely understood. Using a combination of approaches in Drosophila, along with structural modeling, we provide several lines of evidence that suggest that Ankle2 is a regulatory subunit of PP2A, explaining how it promotes BAF dephosphorylation. In addition, we discovered that Ankle2 interacts with the endoplasmic reticulum protein Vap33, which is required for Ankle2 localization at the reassembling nuclear envelope during telophase. We identified the interaction sites of PP2A and Vap33 on Ankle2. Through genetic rescue experiments, we show that the Ankle2/PP2A interaction is essential for the function of Ankle2 in nuclear reassembly and that the Ankle2/Vap33 interaction also promotes this process. Our study sheds light on the molecular mechanisms of post-mitotic nuclear reassembly and suggests that the endoplasmic reticulum is not merely a source of membranes in the process, but also provides localized enzymatic activity.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bhumil Patel, Maryke Grobler ... Needhi Bhalla
    Research Article

    Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double-strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double-strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2’s conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors and coordinate meiotic recombination with synapsis, ensuring the progressive implementation of meiotic recombination and explaining its function in the pachytene checkpoint and crossover control.