NG2 glia are required for vessel network formation during embryonic development

  1. Shilpi Minocha
  2. Delphine Valloton
  3. Isabelle Brunet
  4. Anne Eichmann
  5. Jean-Pierre Hornung
  6. Cecile Lebrand  Is a corresponding author
  1. University of Lausanne, Switzerland
  2. Institut national de la santé et de la recherche médicale, Collège de France, France

Abstract

The NG2+ glia, also known as polydendrocytes or oligodendrocyte precursor cells, represent a new entity among glial cell populations in the central nervous system. However, the complete repertoire of their roles is not yet identified. The embryonic NG2+ glia originate from the Nkx2.1+ progenitors of the ventral telencephalon. Our analysis unravels that, beginning from E12.5 until E16.5, the NG2+ glia populate the entire dorsal telencephalon. Interestingly, their appearance temporally coincides with the establishment of blood vessel network in the embryonic brain. NG2+ glia are closely apposed to developing cerebral vessels by being either positioned at the sprouting tip cells or tethered along the vessel walls. Absence of NG2+ glia drastically affects the vascular development leading to severe reduction of ramifications and connections by E18.5. By revealing a novel and fundamental role for NG2+ glia, our study brings new perspectives to mechanisms underlying proper vessels network formation in embryonic brains.

Article and author information

Author details

  1. Shilpi Minocha

    Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Delphine Valloton

    Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Isabelle Brunet

    Institut national de la santé et de la recherche médicale, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Anne Eichmann

    Institut national de la santé et de la recherche médicale, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Jean-Pierre Hornung

    Department of Fundamental Neurosciences, University of Lausanne, Lausnne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Cecile Lebrand

    Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
    For correspondence
    cecile.lebrand@unil.ch
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All studies on mice of either sex have been performed in compliance with the national and international guidelines and with the approval of the Federation of Swiss cantonal Veterinary Officers (2164).

Copyright

© 2015, Minocha et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,378
    views
  • 636
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shilpi Minocha
  2. Delphine Valloton
  3. Isabelle Brunet
  4. Anne Eichmann
  5. Jean-Pierre Hornung
  6. Cecile Lebrand
(2015)
NG2 glia are required for vessel network formation during embryonic development
eLife 4:e09102.
https://doi.org/10.7554/eLife.09102

Share this article

https://doi.org/10.7554/eLife.09102

Further reading

    1. Neuroscience
    Friedrich Schuessler, Francesca Mastrogiuseppe ... Omri Barak
    Research Article

    The relation between neural activity and behaviorally relevant variables is at the heart of neuroscience research. When strong, this relation is termed a neural representation. There is increasing evidence, however, for partial dissociations between activity in an area and relevant external variables. While many explanations have been proposed, a theoretical framework for the relationship between external and internal variables is lacking. Here, we utilize recurrent neural networks (RNNs) to explore the question of when and how neural dynamics and the network’s output are related from a geometrical point of view. We find that training RNNs can lead to two dynamical regimes: dynamics can either be aligned with the directions that generate output variables, or oblique to them. We show that the choice of readout weight magnitude before training can serve as a control knob between the regimes, similar to recent findings in feedforward networks. These regimes are functionally distinct. Oblique networks are more heterogeneous and suppress noise in their output directions. They are furthermore more robust to perturbations along the output directions. Crucially, the oblique regime is specific to recurrent (but not feedforward) networks, arising from dynamical stability considerations. Finally, we show that tendencies toward the aligned or the oblique regime can be dissociated in neural recordings. Altogether, our results open a new perspective for interpreting neural activity by relating network dynamics and their output.

    1. Computational and Systems Biology
    2. Neuroscience
    Anna Cattani, Don B Arnold ... Nancy Kopell
    Research Article

    The basolateral amygdala (BLA) is a key site where fear learning takes place through synaptic plasticity. Rodent research shows prominent low theta (~3–6 Hz), high theta (~6–12 Hz), and gamma (>30 Hz) rhythms in the BLA local field potential recordings. However, it is not understood what role these rhythms play in supporting the plasticity. Here, we create a biophysically detailed model of the BLA circuit to show that several classes of interneurons (PV, SOM, and VIP) in the BLA can be critically involved in producing the rhythms; these rhythms promote the formation of a dedicated fear circuit shaped through spike-timing-dependent plasticity. Each class of interneurons is necessary for the plasticity. We find that the low theta rhythm is a biomarker of successful fear conditioning. The model makes use of interneurons commonly found in the cortex and, hence, may apply to a wide variety of associative learning situations.