The splicing regulator PTBP1 controls the activity of the transcription factor Pbx1 during neuronal differentiation

Abstract

The RNA-binding proteins PTBP1 and PTBP2 control programs of alternative splicing during neuronal development. PTBP2 was found to maintain embryonic splicing patterns of many synaptic and cytoskeletal proteins during differentiation of neuronal progenitor cells (NPCs) into early neurons. However, the role of the earlier PTBP1 program in embryonic stem cells (ESCs) and NPCs was not clear. We show that PTBP1 controls a program of neuronal gene expression that includes the transcription factor Pbx1. We identify exons specifically regulated by PTBP1 and not PTBP2 as mouse ESCs differentiate into NPCs. We find that PTBP1 represses Pbx1 exon 7 and the expression of the neuronal Pbx1a isoform in ESCs. Using CRISPR-Cas9 to delete regulatory elements for exon 7, we induce Pbx1a expression in ESCs, finding that this activates transcription of neuronal genes. Thus, PTBP1 controls the activity of Pbx1 to suppress its neuronal transcriptional program prior to induction of NPC development.

Article and author information

Author details

  1. Anthony J Linares

    Molecular Biology Institute Graduate Program, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  2. Chia-Ho Lin

    Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  3. Andrey Damianov

    Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  4. Katrina L Adams

    Molecular Biology Institute Graduate Program, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  5. Bennett G Novitch

    Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  6. Douglas L Black

    Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    dougb@microbio.ucla.edu
    Competing interests
    Douglas L Black, Reviewing editor, eLife.

Reviewing Editor

  1. Benjamin J Blencowe, University of Toronto, Canada

Version history

  1. Received: June 6, 2015
  2. Accepted: December 22, 2015
  3. Accepted Manuscript published: December 24, 2015 (version 1)
  4. Version of Record published: February 3, 2016 (version 2)
  5. Version of Record updated: April 27, 2016 (version 3)

Copyright

© 2015, Linares et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,618
    views
  • 947
    downloads
  • 109
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anthony J Linares
  2. Chia-Ho Lin
  3. Andrey Damianov
  4. Katrina L Adams
  5. Bennett G Novitch
  6. Douglas L Black
(2015)
The splicing regulator PTBP1 controls the activity of the transcription factor Pbx1 during neuronal differentiation
eLife 4:e09268.
https://doi.org/10.7554/eLife.09268

Share this article

https://doi.org/10.7554/eLife.09268

Further reading

    1. Developmental Biology
    2. Neuroscience
    Amy R Poe, Lucy Zhu ... Matthew S Kayser
    Research Article

    Sleep and feeding patterns lack strong daily rhythms during early life. As diurnal animals mature, feeding is consolidated to the day and sleep to the night. In Drosophila, circadian sleep patterns are initiated with formation of a circuit connecting the central clock to arousal output neurons; emergence of circadian sleep also enables long-term memory (LTM). However, the cues that trigger the development of this clock-arousal circuit are unknown. Here, we identify a role for nutritional status in driving sleep-wake rhythm development in Drosophila larvae. We find that in the 2nd instar larval period (L2), sleep and feeding are spread across the day; these behaviors become organized into daily patterns by the 3rd instar larval stage (L3). Forcing mature (L3) animals to adopt immature (L2) feeding strategies disrupts sleep-wake rhythms and the ability to exhibit LTM. In addition, the development of the clock (DN1a)-arousal (Dh44) circuit itself is influenced by the larval nutritional environment. Finally, we demonstrate that larval arousal Dh44 neurons act through glucose metabolic genes to drive onset of daily sleep-wake rhythms. Together, our data suggest that changes to energetic demands in developing organisms trigger the formation of sleep-circadian circuits and behaviors.

    1. Cell Biology
    2. Developmental Biology
    Filip Knop, Apolena Zounarova ... Marie Macůrková
    Research Article

    During Caenorhabditis elegans development, multiple cells migrate long distances or extend processes to reach their final position and/or attain proper shape. The Wnt signalling pathway stands out as one of the major coordinators of cell migration or cell outgrowth along the anterior-posterior body axis. The outcome of Wnt signalling is fine-tuned by various mechanisms including endocytosis. In this study, we show that SEL-5, the C. elegans orthologue of mammalian AP2-associated kinase AAK1, acts together with the retromer complex as a positive regulator of EGL-20/Wnt signalling during the migration of QL neuroblast daughter cells. At the same time, SEL-5 in cooperation with the retromer complex is also required during excretory canal cell outgrowth. Importantly, SEL-5 kinase activity is not required for its role in neuronal migration or excretory cell outgrowth, and neither of these processes is dependent on DPY-23/AP2M1 phosphorylation. We further establish that the Wnt proteins CWN-1 and CWN-2 together with the Frizzled receptor CFZ-2 positively regulate excretory cell outgrowth, while LIN-44/Wnt and LIN-17/Frizzled together generate a stop signal inhibiting its extension.