A feedback mechanism converts individual cell features into a supracellular ECM structure in Drosophila trachea

  1. Arzu Öztürk-Çolak
  2. Bernard Moussian
  3. Sofia J Araujo  Is a corresponding author
  4. Jordi Casanova
  1. Parc Cientific de Barcelona, Spain
  2. University of Tuebingen, Germany

Abstract

The extracellular matrix (ECM), a structure contributed to and commonly shared by many cells in an organism, plays an active role during morphogenesis. Here we used the Drosophila tracheal system to study the complex relationship between the ECM and epithelial cells during development. We show that there is an active feedback mechanism between the apical ECM (aECM) and the apical F-actin in tracheal cells. Furthermore, we reveal that cell-cell junctions are key players in this aECM patterning and organisation and that individual cells contribute autonomously to their aECM. Strikingly, changes in the aECM influence the levels of phosphorylated Src42A (pSrc) at cell junctions. Therefore, we propose that Src42A phosphorylation levels provide a link for the extracellular matrix environment to ensure proper cytoskeletal organisation.

Article and author information

Author details

  1. Arzu Öztürk-Çolak

    Institut de Biologia Molecular de Barcelona, Parc Cientific de Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Bernard Moussian

    Animal Genetics, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Sofia J Araujo

    Institut de Biologia Molecular de Barcelona, Parc Cientific de Barcelona, Barcelona, Spain
    For correspondence
    sarbmc@ibmb.csic.es
    Competing interests
    The authors declare that no competing interests exist.
  4. Jordi Casanova

    Institut de Biologia Molecular de Barcelona, Parc Cientific de Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Utpal Banerjee, University of California, Los Angeles, United States

Version history

  1. Received: June 12, 2015
  2. Accepted: January 25, 2016
  3. Accepted Manuscript published: February 2, 2016 (version 1)
  4. Version of Record published: February 12, 2016 (version 2)

Copyright

© 2016, Öztürk-Çolak et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,358
    Page views
  • 599
    Downloads
  • 39
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Arzu Öztürk-Çolak
  2. Bernard Moussian
  3. Sofia J Araujo
  4. Jordi Casanova
(2016)
A feedback mechanism converts individual cell features into a supracellular ECM structure in Drosophila trachea
eLife 5:e09373.
https://doi.org/10.7554/eLife.09373

Share this article

https://doi.org/10.7554/eLife.09373

Further reading

    1. Cell Biology
    2. Neuroscience
    Haibin Yu, Dandan Liu ... Kai Yuan
    Research Article

    O-GlcNAcylation is a dynamic post-translational modification that diversifies the proteome. Its dysregulation is associated with neurological disorders that impair cognitive function, and yet identification of phenotype-relevant candidate substrates in a brain-region specific manner remains unfeasible. By combining an O-GlcNAc binding activity derived from Clostridium perfringens OGA (CpOGA) with TurboID proximity labeling in Drosophila, we developed an O-GlcNAcylation profiling tool that translates O-GlcNAc modification into biotin conjugation for tissue-specific candidate substrates enrichment. We mapped the O-GlcNAc interactome in major brain regions of Drosophila and found that components of the translational machinery, particularly ribosomal subunits, were abundantly O-GlcNAcylated in the mushroom body of Drosophila brain. Hypo-O-GlcNAcylation induced by ectopic expression of active CpOGA in the mushroom body decreased local translational activity, leading to olfactory learning deficits that could be rescued by dMyc overexpression-induced increase of protein synthesis. Our study provides a useful tool for future dissection of tissue-specific functions of O-GlcNAcylation in Drosophila, and suggests a possibility that O-GlcNAcylation impacts cognitive function via regulating regional translational activity in the brain.

    1. Cancer Biology
    2. Cell Biology
    Ibtisam Ibtisam, Alexei F Kisselev
    Short Report

    Rapid recovery of proteasome activity may contribute to intrinsic and acquired resistance to FDA-approved proteasome inhibitors. Previous studies have demonstrated that the expression of proteasome genes in cells treated with sub-lethal concentrations of proteasome inhibitors is upregulated by the transcription factor Nrf1 (NFE2L1), which is activated by a DDI2 protease. Here, we demonstrate that the recovery of proteasome activity is DDI2-independent and occurs before transcription of proteasomal genes is upregulated but requires protein translation. Thus, mammalian cells possess an additional DDI2 and transcription-independent pathway for the rapid recovery of proteasome activity after proteasome inhibition.