Sequential selection of economic good and action in medial frontal cortex of macaques during value-based decisions

  1. Xiaomo Chen
  2. Veit Stuphorn  Is a corresponding author
  1. Johns Hopkins University, United States

Abstract

Value-based decisions could rely either on the selection of desired economic goods or on the selection of the actions that will obtain the goods. We investigated this question by recording from the supplementary eye field (SEF) of monkeys during a gambling task that allowed us to distinguish chosen good from chosen action signals. Analysis of the individual neuron activity, as well as of the population state-space dynamic, showed that SEF encodes first the chosen gamble option (the desired economic good) and only ~100 ms later the saccade that will obtain it (the chosen action). The action selection is likely driven by inhibitory interactions between different SEF neurons. Our results suggest that during value-based decisions the selection of economic goods precedes and guides the selection of actions. The two selection steps serve different functions and can therefore not compensate for each other, even when information guiding both processes is given simultaneously.

Article and author information

Author details

  1. Xiaomo Chen

    Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Veit Stuphorn

    Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, United States
    For correspondence
    veit@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Wolfram Schultz, University of Cambridge, United Kingdom

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (PR13A337) of Johns Hopkins University.

Version history

  1. Received: June 13, 2015
  2. Accepted: November 26, 2015
  3. Accepted Manuscript published: November 27, 2015 (version 1)
  4. Version of Record published: February 8, 2016 (version 2)

Copyright

© 2015, Chen & Stuphorn

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,320
    views
  • 297
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiaomo Chen
  2. Veit Stuphorn
(2015)
Sequential selection of economic good and action in medial frontal cortex of macaques during value-based decisions
eLife 4:e09418.
https://doi.org/10.7554/eLife.09418

Share this article

https://doi.org/10.7554/eLife.09418

Further reading

    1. Neuroscience
    Harshvardhan Gazula, Henry FJ Tregidgo ... Juan E Iglesias
    Tools and Resources

    We present open-source tools for three-dimensional (3D) analysis of photographs of dissected slices of human brains, which are routinely acquired in brain banks but seldom used for quantitative analysis. Our tools can: (1) 3D reconstruct a volume from the photographs and, optionally, a surface scan; and (2) produce a high-resolution 3D segmentation into 11 brain regions per hemisphere (22 in total), independently of the slice thickness. Our tools can be used as a substitute for ex vivo magnetic resonance imaging (MRI), which requires access to an MRI scanner, ex vivo scanning expertise, and considerable financial resources. We tested our tools on synthetic and real data from two NIH Alzheimer’s Disease Research Centers. The results show that our methodology yields accurate 3D reconstructions, segmentations, and volumetric measurements that are highly correlated to those from MRI. Our method also detects expected differences between post mortem confirmed Alzheimer’s disease cases and controls. The tools are available in our widespread neuroimaging suite ‘FreeSurfer’ (https://surfer.nmr.mgh.harvard.edu/fswiki/PhotoTools).

    1. Neuroscience
    John J Maurer, Alexandra Lin ... Shinjae Chung
    Research Article

    Rapid eye movement sleep (REMs) is characterized by activated electroencephalogram (EEG) and muscle atonia, accompanied by vivid dreams. REMs is homeostatically regulated, ensuring that any loss of REMs is compensated by a subsequent increase in its amount. However, the neural mechanisms underlying the homeostatic control of REMs are largely unknown. Here, we show that GABAergic neurons in the preoptic area of the hypothalamus projecting to the tuberomammillary nucleus (POAGAD2→TMN neurons) are crucial for the homeostatic regulation of REMs in mice. POAGAD2→TMN neurons are most active during REMs, and inhibiting them specifically decreases REMs. REMs restriction leads to an increased number and amplitude of calcium transients in POAGAD2→TMN neurons, reflecting the accumulation of REMs pressure. Inhibiting POAGAD2→TMN neurons during REMs restriction blocked the subsequent rebound of REMs. Our findings reveal a hypothalamic circuit whose activity mirrors the buildup of homeostatic REMs pressure during restriction and that is required for the ensuing rebound in REMs.