Determining composition of micron-scale protein deposits in neurodegenerative disease by spatially targeted optical microproteomics

  1. Kevin C Hadley
  2. Rishi Rakhit
  3. Hongbo Guo
  4. Yulong Sun
  5. James EN Jonkman
  6. Joanne McLaurin
  7. Lili-Naz Hazrati
  8. Andrew Emili
  9. Avijit Chakrabartty  Is a corresponding author
  1. University of Toronto, Canada
  2. Stanford University, United States
  3. University Health Network, Canada

Abstract

Spatially targeted optical microproteomics (STOMP) is a novel proteomics technique for interrogating micron-scale regions of interest (ROI) in mammalian tissue, with no requirement for genetic manipulation. Methanol or formalin fixed specimens are stained with fluorescent dyes or antibodies to visualize ROIs, then soaked in solutions containing the photo-tag: 4-benzoylbenzyl-glycyl-hexahistidine. Confocal imaging along with two photon excitation are used to covalently couple photo-tags to all proteins within each ROI, to a resolution of 0.67 µm in the xy-plane and 1.48 µm axially. After tissue solubilization, photo-tagged proteins are isolated and identified by mass spectrometry. As a test case, we examined amyloid plaques in an Alzheimer's disease (AD) mouse model and a postmortem AD case, confirming known plaque constituents and discovering new ones. STOMP can be applied to various biological samples including cell lines, primary cell cultures, ex vivo specimens, biopsy samples and fixed postmortem tissue.

Article and author information

Author details

  1. Kevin C Hadley

    Department of Medical Biophysics, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Rishi Rakhit

    Department of Chemical and Systems Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Hongbo Guo

    The Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular & Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Yulong Sun

    Department of Medical Biophysics, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. James EN Jonkman

    Advanced Optical Microscopy Facility, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Joanne McLaurin

    Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Lili-Naz Hazrati

    Tanz Centre for Research in Neurodegenerative Diseases, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Andrew Emili

    The Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular & Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Avijit Chakrabartty

    Departments of Biochemistry and Medical Biophysics, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
    For correspondence
    chakrab@uhnresearch.ca
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This study was performed in strict accordance with the University of Toronto Animal Care Committee Guidelines.

Human subjects: The work presented was performed in compliance with recognized international standards, including the International Conference on Harmonization (ICH), the Council for International Organizations of Medical Sciences (CIOMS) and the principles of the Declaration of Helsinki. Use of human tissue was in accordance with the University Health Network Research Ethics Board. The Human brain samples were collected as part of the Canadian Brain Tissue Bank (CBTB). At the time of collection, informed consent was obtained.

Copyright

© 2015, Hadley et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,445
    views
  • 750
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kevin C Hadley
  2. Rishi Rakhit
  3. Hongbo Guo
  4. Yulong Sun
  5. James EN Jonkman
  6. Joanne McLaurin
  7. Lili-Naz Hazrati
  8. Andrew Emili
  9. Avijit Chakrabartty
(2015)
Determining composition of micron-scale protein deposits in neurodegenerative disease by spatially targeted optical microproteomics
eLife 4:e09579.
https://doi.org/10.7554/eLife.09579

Share this article

https://doi.org/10.7554/eLife.09579

Further reading

    1. Biochemistry and Chemical Biology
    Jianheng Fox Liu, Ben R Hawley ... Samie R Jaffrey
    Tools and Resources

    N 6,2’-O-dimethyladenosine (m6Am) is a modified nucleotide located at the first transcribed position in mRNA and snRNA that is essential for diverse physiological processes. m6Am mapping methods assume each gene uses a single start nucleotide. However, gene transcription usually involves multiple start sites, generating numerous 5’ isoforms. Thus, gene-level annotations cannot capture the diversity of m6Am modification in the transcriptome. Here, we describe CROWN-seq, which simultaneously identifies transcription-start nucleotides and quantifies m6Am stoichiometry for each 5’ isoform that initiates with adenosine. Using CROWN-seq, we map the m6Am landscape in nine human cell lines. Our findings reveal that m6Am is nearly always a high stoichiometry modification, with only a small subset of cellular mRNAs showing lower m6Am stoichiometry. We find that m6Am is associated with increased transcript expression and provide evidence that m6Am may be linked to transcription initiation associated with specific promoter sequences and initiation mechanisms. These data suggest a potential new function for m6Am in influencing transcription.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Eva Herdering, Tristan Reif-Trauttmansdorff ... Ruth Anne Schmitz
    Research Article

    Glutamine synthetases (GS) are central enzymes essential for the nitrogen metabolism across all domains of life. Consequently, they have been extensively studied for more than half a century. Based on the ATP-dependent ammonium assimilation generating glutamine, GS expression and activity are strictly regulated in all organisms. In the methanogenic archaeon Methanosarcina mazei, it has been shown that the metabolite 2-oxoglutarate (2-OG) directly induces the GS activity. Besides, modulation of the activity by interaction with small proteins (GlnK1 and sP26) has been reported. Here, we show that the strong activation of M. mazei GS (GlnA1) by 2-OG is based on the 2-OG dependent dodecamer assembly of GlnA1 by using mass photometry (MP) and single particle cryo-electron microscopy (cryo-EM) analysis of purified strep-tagged GlnA1. The dodecamer assembly from dimers occurred without any detectable intermediate oligomeric state and was not affected in the presence of GlnK1. The 2.39 Å cryo-EM structure of the dodecameric complex in the presence of 12.5 mM 2-OG demonstrated that 2-OG is binding between two monomers. Thereby, 2-OG appears to induce the dodecameric assembly in a cooperative way. Furthermore, the active site is primed by an allosteric interaction cascade caused by 2-OG-binding towards an adaption of an open active state conformation. In the presence of additional glutamine, strong feedback inhibition of GS activity was observed. Since glutamine dependent disassembly of the dodecamer was excluded by MP, feedback inhibition most likely relies on the binding of glutamine to the catalytic site. Based on our findings, we propose that under nitrogen limitation the induction of M. mazei GS into a catalytically active dodecamer is not affected by GlnK1 and crucially depends on the presence of 2-OG.