Identification of Pol IV and RDR2-dependent precursors of 24 nt siRNAs guiding de novo DNA methylation in Arabidopsis

  1. Todd Blevins
  2. Ram Podicheti
  3. Vibhor Mishra
  4. Michelle Marasco
  5. Jing Wang
  6. Douglas Rusch
  7. Haixu Tang
  8. Craig S Pikaard  Is a corresponding author
  1. Université de Strasbourg, France
  2. Indiana University, United States
  3. Howard Hughes Medical Institute, Indiana University, United States

Abstract

In Arabidopsis thaliana, abundant 24 nt siRNAs guide the cytosine methylation and silencing of transposons and a subset of genes. 24 nt siRNA biogenesis requires nuclear RNA Polymerase IV (Pol IV), RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and DICER-LIKE3 (DCL3). However, siRNA precursors are mostly undefined. We identified Pol IV and RDR2-dependent RNAs (P4R2 RNAs) that accumulate in dcl3 mutants and are diced into 24 nt RNAs by DCL3 in vitro. P4R2 RNAs are mostly 26-45 nt and initiate with a purine adjacent to a pyrimidine, characteristics shared by Pol IV transcripts generated in vitro. RDR2 terminal transferase activity, also demonstrated in vitro, may account for occasional non-templated nucleotides at P4R2 RNA 3' termini. 24 nt siRNAs primarily correspond to the 5' or 3' ends of P4R2 RNAs, suggesting a model whereby siRNAs are generated from either end of P4R2 duplexes by single dicing events.

Article and author information

Author details

  1. Todd Blevins

    : Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Université de Strasbourg, Strasbourg, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Ram Podicheti

    Center for Genomics and Bioinformatics, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Vibhor Mishra

    Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michelle Marasco

    Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jing Wang

    Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Douglas Rusch

    Center for Genomics and Bioinformatics, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Haixu Tang

    School of Informatics and Computing, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Craig S Pikaard

    Howard Hughes Medical Institute, Indiana University, Bloomington, United States
    For correspondence
    cpikaard@indiana.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Blevins et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,158
    views
  • 1,175
    downloads
  • 218
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Todd Blevins
  2. Ram Podicheti
  3. Vibhor Mishra
  4. Michelle Marasco
  5. Jing Wang
  6. Douglas Rusch
  7. Haixu Tang
  8. Craig S Pikaard
(2015)
Identification of Pol IV and RDR2-dependent precursors of 24 nt siRNAs guiding de novo DNA methylation in Arabidopsis
eLife 4:e09591.
https://doi.org/10.7554/eLife.09591

Share this article

https://doi.org/10.7554/eLife.09591

Further reading

    1. Chromosomes and Gene Expression
    2. Neuroscience
    Robyn D Moir, Emilio Merheb ... Ian M Willis
    Research Article

    Pathogenic variants in subunits of RNA polymerase (Pol) III cause a spectrum of Polr3-related neurodegenerative diseases including 4H leukodystrophy. Disease onset occurs from infancy to early adulthood and is associated with a variable range and severity of neurological and non-neurological features. The molecular basis of Polr3-related disease pathogenesis is unknown. We developed a postnatal whole-body mouse model expressing pathogenic Polr3a mutations to examine the molecular mechanisms by which reduced Pol III transcription results primarily in central nervous system phenotypes. Polr3a mutant mice exhibit behavioral deficits, cerebral pathology and exocrine pancreatic atrophy. Transcriptome and immunohistochemistry analyses of cerebra during disease progression show a reduction in most Pol III transcripts, induction of innate immune and integrated stress responses and cell-type-specific gene expression changes reflecting neuron and oligodendrocyte loss and microglial activation. Earlier in the disease when integrated stress and innate immune responses are minimally induced, mature tRNA sequencing revealed a global reduction in tRNA levels and an altered tRNA profile but no changes in other Pol III transcripts. Thus, changes in the size and/or composition of the tRNA pool have a causal role in disease initiation. Our findings reveal different tissue- and brain region-specific sensitivities to a defect in Pol III transcription.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ting-Wen Chen, Hsiao-Wei Liao ... Chung-Te Chang
    Research Article

    The mRNA 5'-cap structure removal by the decapping enzyme DCP2 is a critical step in gene regulation. While DCP2 is the catalytic subunit in the decapping complex, its activity is strongly enhanced by multiple factors, particularly DCP1, which is the major activator in yeast. However, the precise role of DCP1 in metazoans has yet to be fully elucidated. Moreover, in humans, the specific biological functions of the two DCP1 paralogs, DCP1a and DCP1b, remain largely unknown. To investigate the role of human DCP1, we generated cell lines that were deficient in DCP1a, DCP1b, or both to evaluate the importance of DCP1 in the decapping machinery. Our results highlight the importance of human DCP1 in decapping process and show that the EVH1 domain of DCP1 enhances the mRNA-binding affinity of DCP2. Transcriptome and metabolome analyses outline the distinct functions of DCP1a and DCP1b in human cells, regulating specific endogenous mRNA targets and biological processes. Overall, our findings provide insights into the molecular mechanism of human DCP1 in mRNA decapping and shed light on the distinct functions of its paralogs.