1. Neuroscience
Download icon

Using an achiasmic human visual system to quantify the relationship between the fMRI BOLD signal and neural response

  1. Pinglei Bao
  2. Christopher J Purington
  3. Bosco S Tjan  Is a corresponding author
  1. University of Southern California, United States
  2. University of California, Berkeley, United States
Research Article
  • Cited 9
  • Views 1,441
  • Annotations
Cite this article as: eLife 2015;4:e09600 doi: 10.7554/eLife.09600

Abstract

Achiasma in humans causes gross mis-wiring of the retinal-fugal projection, resulting in overlapped cortical representations of left and right visual hemifields. We show that in areas V1-V3 this overlap is due to two co-located but non-interacting populations of neurons, each with a receptive field serving only one hemifield. Importantly, the two populations share the same local vascular control, resulting in a unique organization useful for quantifying the relationship between neural and fMRI BOLD responses without direct measurement of neural activity. Specifically, we can non-invasively double local neural responses by stimulating both neuronal populations with identical stimuli presented symmetrically across the vertical meridian to both visual hemifields, versus one population by stimulating in one hemifield. Measurements from a series of such doubling experiments show that the amplitude of BOLD response is proportional to approximately 0.5 power of the underlying neural response. Reanalyzing published data shows that this inferred relationship is general.

Article and author information

Author details

  1. Pinglei Bao

    Neuroscience Graduate Program, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Christopher J Purington

    School of Optometry, University of California, Berkeley, Berkeley, CA, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Bosco S Tjan

    Psychology, University of Southern California, Los Angeles, CA, United States
    For correspondence
    btjan@usc.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: The Institutional Review Board of the University of Southern California approved the experimental protocol, and each subject provided written informed consent.

Reviewing Editor

  1. Jody C Culham, University of Western Ontario, Canada

Publication history

  1. Received: July 23, 2015
  2. Accepted: November 26, 2015
  3. Accepted Manuscript published: November 27, 2015 (version 1)
  4. Version of Record published: February 14, 2016 (version 2)

Copyright

© 2015, Bao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,441
    Page views
  • 245
    Downloads
  • 9
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, PubMed Central, Crossref.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Wucheng Tao et al.
    Research Article Updated

    Long-term potentiation (LTP) is arguably the most compelling cellular model for learning and memory. While the mechanisms underlying the induction of LTP (‘learning’) are well understood, the maintenance of LTP (‘memory’) has remained contentious over the last 20 years. Here, we find that Ca2+-calmodulin-dependent kinase II (CaMKII) contributes to synaptic transmission and is required LTP maintenance. Acute inhibition of CaMKII erases LTP and transient inhibition of CaMKII enhances subsequent LTP. These findings strongly support the role of CaMKII as a molecular storage device.

    1. Medicine
    2. Neuroscience
    Zifei Liang et al.
    Tools and Resources

    1H MRI maps brain structure and function non-invasively through versatile contrasts that exploit inhomogeneity in tissue micro-environments. Inferring histopathological information from MRI findings, however, remains challenging due to absence of direct links between MRI signals and cellular structures. Here, we show that deep convolutional neural networks, developed using co-registered multi-contrast MRI and histological data of the mouse brain, can estimate histological staining intensity directly from MRI signals at each voxel. The results provide three-dimensional maps of axons and myelin with tissue contrasts that closely mimics target histology and enhanced sensitivity and specificity compared to conventional MRI markers. Furthermore, the relative contribution of each MRI contrast within the networks can be used to optimize multi-contrast MRI acquisition. We anticipate our method to be a starting point for translation of MRI results into easy-to-understand virtual histology for neurobiologists and provide resources for validating novel MRI techniques.