Abstract

Aberrant activation of Anaplastic Lymphoma Kinase (ALK) has been described in a range of human cancers, including non-small cell lung cancer and neuroblastoma (Hallberg and Palmer 2013). Vertebrate ALK has been considered to be an orphan receptor and the identity of the ALK ligand(s) is a critical issue. Here we show that FAM150A and FAM150B are potent ligands for human ALK that bind to the extracellular domain of ALK and in addition to activation of wild type ALK are able to drive 'superactivation' of activated ALK mutants from neuroblastoma. In conclusion, our data show that ALK is robustly activated by the FAM150A/B ligands and provide an opportunity to develop ALK-targeted therapies in situations where ALK is overexpressed/activated or mutated in the context of the full length receptor.

Article and author information

Author details

  1. Jikui Guan

    Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Ganesh Umapathy

    Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Yasuo Yamazaki

    Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Georg Wolfstetter

    Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Patricia Mendoza

    Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Kathrin Pfeifer

    Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  7. Ateequrrahman Mohammed

    Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  8. Fredrik Hugosson

    Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  9. Hongbing Zhang

    Five Prime Therapeutics Inc., South San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Amy W Hsu

    Five Prime Therapeutics Inc., South San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Robert Halenbeck

    Five Prime Therapeutics Inc., South San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Bengt Hallberg

    Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  13. Ruth H Palmer

    Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
    For correspondence
    ruth.palmer@gu.se
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Guan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,392
    views
  • 820
    downloads
  • 116
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jikui Guan
  2. Ganesh Umapathy
  3. Yasuo Yamazaki
  4. Georg Wolfstetter
  5. Patricia Mendoza
  6. Kathrin Pfeifer
  7. Ateequrrahman Mohammed
  8. Fredrik Hugosson
  9. Hongbing Zhang
  10. Amy W Hsu
  11. Robert Halenbeck
  12. Bengt Hallberg
  13. Ruth H Palmer
(2015)
FAM150A and FAM150B are activating ligands for Anaplastic Lymphoma Kinase
eLife 4:e09811.
https://doi.org/10.7554/eLife.09811

Share this article

https://doi.org/10.7554/eLife.09811

Further reading

    1. Cell Biology
    Kaili Du, Hongyu Chen ... Dan Li
    Research Article

    Niemann–Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.

    1. Cell Biology
    2. Developmental Biology
    Sarah Y Coomson, Salil A Lachke
    Insight

    A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.