Dendritic nonlinearities are tuned for efficient spike-based computations in cortical circuits

  1. Balazs B Ujfalussy  Is a corresponding author
  2. Judit K Makara
  3. Tiago Branco
  4. Máté Lengyel
  1. University of Cambridge, United Kingdom
  2. Institute of Experimental Medicine, Hungary
  3. MRC Laboratory of Molecular Biology, United Kingdom

Abstract

Cortical neurons integrate thousands of synaptic inputs in their dendrites in highly nonlinear ways. It is unknown how these dendritic nonlinearities in individual cells contribute to computations at the level of neural circuits. Here we show that dendritic nonlinearities are critical for the efficient integration of synaptic inputs in circuits performing analog computations with spiking neurons. We developed a theory that formalises how a neuron's dendritic nonlinearity that is optimal for integrating synaptic inputs depends on the statistics of its presynaptic activity patterns. Based on their in vivo preynaptic population statistics (firing rates, membrane potential fluctuations, and correlations due to ensemble dynamics), our theory accurately predicted the responses of two different types of cortical pyramidal cells to patterned stimulation by two-photon glutamate uncaging. These results reveal a new computational principle underlying dendritic integration in cortical neurons by suggesting a functional link between cellular and systems-level properties of cortical circuits.

Article and author information

Author details

  1. Balazs B Ujfalussy

    Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    balazs.ujfalussy@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Judit K Makara

    Lendület Laboratory of Neuronal Signaling, Institute of Experimental Medicine, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  3. Tiago Branco

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Máté Lengyel

    Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Hippocampal experiments were conducted according to methods approved by the Janelia Farm Institutional Animal Care and Use Committee and 26 the Animal Care and Use Committee (ACUC) of the Institute of Experimental Medicine, Hungarian Academy of 27 Sciences, and in accordance with 86/609/EEC/2 and DIRECTIVE 2010/63/EU Directives of the EU. Neocortical experiments were performed in strict accordance with guidelines of the Wolfson Institute for Biomedical Research and with the national guidelines.

Copyright

© 2015, Ujfalussy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,007
    views
  • 857
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Balazs B Ujfalussy
  2. Judit K Makara
  3. Tiago Branco
  4. Máté Lengyel
(2015)
Dendritic nonlinearities are tuned for efficient spike-based computations in cortical circuits
eLife 4:e10056.
https://doi.org/10.7554/eLife.10056

Share this article

https://doi.org/10.7554/eLife.10056

Further reading

    1. Neuroscience
    Phillip P Witkowski, Lindsay JH Rondot ... Erie Boorman
    Research Article

    Adaptive behavior in complex environments critically relies on the ability to appropriately link specific choices or actions to their outcomes. However, the neural mechanisms that support the ability to credit only those past choices believed to have caused the observed outcomes remain unclear. Here, we leverage multivariate pattern analyses of functional magnetic resonance imaging (fMRI) data and an adaptive learning task to shed light on the underlying neural mechanisms of such specific credit assignment. We find that the lateral orbitofrontal cortex (lOFC) and hippocampus (HC) code for the causal choice identity when credit needs to be assigned for choices that are separated from outcomes by a long delay, even when this delayed transition is punctuated by interim decisions. Further, we show when interim decisions must be made, learning is additionally supported by lateral frontopolar cortex (lFPC). Our results indicate that lFPC holds previous causal choices in a ‘pending’ state until a relevant outcome is observed, and the fidelity of these representations predicts the fidelity of subsequent causal choice representations in lOFC and HC during credit assignment. Together, these results highlight the importance of the timely reinstatement of specific causes in lOFC and HC in learning choice-outcome relationships when delays and choices intervene, a critical component of real-world learning and decision making.

    1. Neuroscience
    Ekin Kaya, Evan Wegienka ... Gideon Rothschild
    Research Article

    Effective regulation of energy metabolism is critical for survival. Metabolic control involves various nuclei within the hypothalamus, which receive information about the body’s energy state and coordinate appropriate responses to maintain homeostasis, such as thermogenesis, pancreatic insulin secretion, and food-seeking behaviors. It has recently been found that the hippocampus, a brain region traditionally associated with memory and spatial navigation, is also involved in metabolic regulation. Specifically, hippocampal sharp wave-ripples (SWRs), which are high-frequency neural oscillations supporting memory consolidation and foraging decisions, have been shown to reduce peripheral glucose levels. However, whether SWRs are enhanced by recent feeding—when the need for glucose metabolism increases, and if so, whether feeding-dependent modulation of SWRs is communicated to other brain regions involved in metabolic regulation—remains unknown. To address these gaps, we recorded SWRs from the dorsal CA1 region of the hippocampus of mice during sleep sessions before and after consumption of meals of varying caloric values. We found that SWRs occurring during sleep are significantly enhanced following food intake, with the magnitude of enhancement being dependent on the caloric content of the meal. This pattern occurred under both food-deprived and ad libitum feeding conditions. Moreover, we demonstrate that GABAergic neurons in the lateral hypothalamus, which are known to regulate food intake, exhibit a robust SWR-triggered increase in activity. These findings identify the satiety state as a factor modulating SWRs and suggest that hippocampal-lateral hypothalamic communication is a potential mechanism by which SWRs could modulate peripheral metabolism and food intake.