Quantitative H2S-mediated protein sulfhydration reveals metabolic reprogramming during the Integrated Stress Response

  1. Xing-Huang Gao
  2. Dawid Krokowski
  3. Bo-Jhih Guan
  4. Ilya Bederman
  5. Mithu Majumder
  6. Marc Parisien
  7. Luda Diatchenko
  8. Omer Kabil
  9. Belinda Willard
  10. Ruma Banerjee
  11. Benlian Wang
  12. Gurkan Bebek
  13. Charles R Evans
  14. Paul L Fox
  15. Stanton L Gerson
  16. Charles Hoppel
  17. Ming Liu
  18. Peter Arvan
  19. Maria Hatzoglou  Is a corresponding author
  1. Case Western Reserve University, United States
  2. McGill University, Canada
  3. University of Michigan Medical School, United States
  4. Cleveland Clinic Lerner Research Institute, United States

Abstract

The sulfhydration of cysteine residues in proteins is an important mechanism involved in diverse biological processes. We have developed a proteomics approach to quantitatively profile the changes of sulfhydrated cysteines in biological systems. Bioinformatics analysis revealed that sulfhydrated cysteines are part of a wide range of biological functions. In pancreatic β cells exposed to endoplasmic reticulum (ER) stress, elevated H2S promotes the sulfhydration of enzymes in energy metabolism and stimulates glycolytic flux. We propose that transcriptional and translational reprogramming by the Integrated Stress Response (ISR) in pancreatic β cells is coupled to metabolic alternations triggered by sulfhydration of key enzymes in intermediary metabolism.

Article and author information

Author details

  1. Xing-Huang Gao

    Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Dawid Krokowski

    Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Bo-Jhih Guan

    Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ilya Bederman

    Department of Pediatrics, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Mithu Majumder

    Department of Pharmacology, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Marc Parisien

    Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Luda Diatchenko

    Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Omer Kabil

    Biological Chemistry, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Belinda Willard

    Mass Spectrometry Laboratory for Protein Sequencing, Cleveland Clinic Lerner Research Institute, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Ruma Banerjee

    Biological Chemistry, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Benlian Wang

    Center for Proteomics and Bioinformatics,Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Gurkan Bebek

    Center for Proteomics and Bioinformatics, Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Charles R Evans

    Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Paul L Fox

    Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Stanton L Gerson

    Department of Medicine, Division of Hematology/Oncology, School of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Charles Hoppel

    Department of Pharmacology, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Ming Liu

    Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Peter Arvan

    Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Maria Hatzoglou

    Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, United States
    For correspondence
    mxh8@case.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Experimental protocols were approved by the Case Western Reserve University Institutional Animal Care and Use Committee.

Human subjects: Human Islet Study-Institutional review board approval for research use of isolated human islets was obtained from the University of Michigan (IRB number 2014-0069). Human islets were isolated from previously healthy, nondiabetic organ donors by the University of Chicago Transplant Center. Three independent human islet batches from two male donors aged 20 and 58 and one female donor aged 48 were used in this study.

Copyright

© 2015, Gao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,121
    views
  • 1,216
    downloads
  • 173
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xing-Huang Gao
  2. Dawid Krokowski
  3. Bo-Jhih Guan
  4. Ilya Bederman
  5. Mithu Majumder
  6. Marc Parisien
  7. Luda Diatchenko
  8. Omer Kabil
  9. Belinda Willard
  10. Ruma Banerjee
  11. Benlian Wang
  12. Gurkan Bebek
  13. Charles R Evans
  14. Paul L Fox
  15. Stanton L Gerson
  16. Charles Hoppel
  17. Ming Liu
  18. Peter Arvan
  19. Maria Hatzoglou
(2015)
Quantitative H2S-mediated protein sulfhydration reveals metabolic reprogramming during the Integrated Stress Response
eLife 4:e10067.
https://doi.org/10.7554/eLife.10067

Share this article

https://doi.org/10.7554/eLife.10067

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Mai Nguyen, Elda Bauda ... Cecile Morlot
    Research Article

    Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.