Extracting grid cell characteristics from place cell inputs using non-negative principal component analysis

  1. Yedidyah Dordek
  2. Daniel Soudry
  3. Ron Meir
  4. Dori Derdikman  Is a corresponding author
  1. Technion - Israel Institute of Technology, Israel
  2. Columbia University, United States
  3. Technion - Israel Institute Of technology, Israel

Abstract

Many recent models study the downstream projection from grid cells to place cells, while recent data has pointed out the importance of the feedback projection. We thus asked how grid cells are affected by the nature of the input from the place cells.We propose a single-layer neural network with feedforward weights connecting place-like input cells to grid cell outputs. Place-to-grid weights were learned via a generalized Hebbian rule. The architecture of this network highly resembles neural networks used to perform Principal Component Analysis (PCA). Both numerical results and analytic considerations indicate that if the components of the feedforward neural network were non-negative, the output converged to a hexagonal lattice. Without the non-negativity constraint the output converged to a square lattice. Consistent with experiments, grid spacing ratio between the first two consecutive modules was ~1.4. Our results express a possible linkage between place cell to grid cell interactions and PCA.

Article and author information

Author details

  1. Yedidyah Dordek

    Faculty of Electrical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel Soudry

    Department of Statistics, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ron Meir

    Faculty of Electrical Engineering, Technion - Israel Institute Of technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Dori Derdikman

    Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
    For correspondence
    derdik@technion.ac.il
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Dordek et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,790
    views
  • 1,445
    downloads
  • 133
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yedidyah Dordek
  2. Daniel Soudry
  3. Ron Meir
  4. Dori Derdikman
(2016)
Extracting grid cell characteristics from place cell inputs using non-negative principal component analysis
eLife 5:e10094.
https://doi.org/10.7554/eLife.10094

Share this article

https://doi.org/10.7554/eLife.10094

Further reading

    1. Neuroscience
    David C Williams, Amanda Chu ... Michael A McDannald
    Research Advance

    Recognizing and responding to threat cues is essential to survival. Freezing is a predominant threat behavior in rats. We have recently shown that a threat cue can organize diverse behaviors beyond freezing, including locomotion (Chu et al., 2024). However, that experimental design was complex, required many sessions, and had rats receive many foot shock presentations. Moreover, the findings were descriptive. Here, we gave female and male Long Evans rats cue light illumination paired or unpaired with foot shock (8 total) in a conditioned suppression setting, using a range of shock intensities (0.15, 0.25, 0.35, or 0.50 mA). We found that conditioned suppression was only observed at higher foot shock intensities (0.35 mA and 0.50 mA). We constructed comprehensive temporal ethograms by scoring 22,272 frames across 12 behavior categories in 200-ms intervals around cue light illumination. The 0.50 mA and 0.35 mA shock-paired visual cues suppressed reward seeking, rearing, and scaling, as well as light-directed rearing and light-directed scaling. The shock-paired visual cue further elicited locomotion and freezing. Linear discriminant analyses showed that ethogram data could accurately classify rats into paired and unpaired groups. Using complete ethogram data produced superior classification compared to behavior subsets, including an Immobility subset featuring freezing. The results demonstrate diverse threat behaviors – in a short and simple procedure – containing sufficient information to distinguish the visual fear conditioning status of individual rats.

    1. Neuroscience
    Agnieszka Glica, Katarzyna Wasilewska ... Katarzyna Jednoróg
    Research Article

    The neural noise hypothesis of dyslexia posits an imbalance between excitatory and inhibitory (E/I) brain activity as an underlying mechanism of reading difficulties. This study provides the first direct test of this hypothesis using both electroencephalography (EEG) power spectrum measures in 120 Polish adolescents and young adults (60 with dyslexia, 60 controls) and glutamate (Glu) and gamma-aminobutyric acid (GABA) concentrations from magnetic resonance spectroscopy (MRS) at 7T MRI scanner in half of the sample. Our results, supported by Bayesian statistics, show no evidence of E/I balance differences between groups, challenging the hypothesis that cortical hyperexcitability underlies dyslexia. These findings suggest that alternative mechanisms must be explored and highlight the need for further research into the E/I balance and its role in neurodevelopmental disorders.