Greatwall promotes cell transformation by hyperactivating AKT in human malignancies

  1. Jorge Vera
  2. Lydia Lartigue
  3. Suzanne Vigneron
  4. Gilles Gadea
  5. Veronique Gire
  6. Maguy Del Rio
  7. Isabelle Soubeyran
  8. Frederic Chibon
  9. Thierry Lorca
  10. Anna Castro  Is a corresponding author
  1. Université de Montpellier, France
  2. Université Bordeaux Segalen, France
  3. Institut de Recherche en Cancérologie de Montpellier, France

Abstract

The PP2A phosphatase is often inactivated in cancer and is considered as a tumour suppressor. A new pathway controlling PP2A activity in mitosis has been recently described. This pathway includes the Greatwall (GWL) kinase and its substrates endosulfines. At mitotic entry, GWL is activated and phosphorylates endosulfines that then bind and inhibit PP2A. We analysed whether GWL overexpression could participate in cancer development. We show that GWL overexpression promotes cell transformation and increases invasive capacities of cells through hyperphosphorylation of the oncogenic kinase AKT. Interestingly, AKT hyperphosphorylation induced by GWL is independent of endosulfines. Rather, GWL induces GSK3 kinase dephosphorylation in its inhibitory sites and subsequent SCF-dependent degradation of the PHLPP phosphatase responsible for AKT dephosphorylation. In line with its oncogenic activity, we find that GWL is often overexpressed in human colorectal tumoral tissues. Thus, GWL is a human onocoprotein that promotes the hyperactivation of AKT via the degradation of its phosphatase, PHLPP, in human malignancies.

Article and author information

Author details

  1. Jorge Vera

    Centre de Recherche de Biochimie Macromoléculaire, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Lydia Lartigue

    Department of Medical Oncology, Institut Bergonié, Institut National de la Santé et de la Recherche Medicale, Université Bordeaux Segalen, Bordeux, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Suzanne Vigneron

    Centre de Recherche de Biochimie Macromoléculaire, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Gilles Gadea

    Centre de Recherche de Biochimie Macromoléculaire, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Veronique Gire

    Centre de Recherche de Biochimie Macromoléculaire, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Maguy Del Rio

    Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Isabelle Soubeyran

    Department of Medical Oncology, Institut Bergonié, Institut National de la Santé et de la Recherche Medicale, Université Bordeaux Segalen, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Frederic Chibon

    Department of Medical Oncology, Institut Bergonié, Institut National de la Santé et de la Recherche Medicale, Université Bordeaux Segalen, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Thierry Lorca

    Centre de Recherche de Biochimie Macromoléculaire, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Anna Castro

    Centre de Recherche de Biochimie Macromoléculaire, Université de Montpellier, Montpellier, France
    For correspondence
    anna.castro@crbm.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. James Ferrell, Stanford University, United States

Ethics

Animal experimentation: All animal experiments conformed to the relevant regulatory standards and were approved by the Ethics Local Committee of the IRCM (Institut de Recherche en Cancérologie de Montpellier) and by the Regional Ethic Commitée of the "Languedoc Roussillon"(France). Ref: 1137.

Human subjects: Human Samples for TMA:Cases were issued from the archives of the Department of Pathology of Bergonie Institute (Bordeaux, France). For all samples, ethical approval was obtained from the appropriate committees. Cases were then centralised in the Biological Resources Center of Bergonie Institute, which has received the agreement from the French authorities to deliver samples for scientific research (AC-2008-812)."The TMA used in this study has been moreover used in three other published studies (See: Soubeyran and al., Am J of Pathology 2011, Rey and al., Cell Cycle 2013 and Oncogene 2015).For colorectal tumour samples used for western blot:The study was approved by the ICM CORT (Translational Research Committee) ethical committee and all participating patients were informed of the study and provided their signed written informed consent before enrolment. This set of samples were already used in Del Rio et al., JCO 2007 and Del Rio et al, Plos one 2013.

Version history

  1. Received: July 15, 2015
  2. Accepted: November 26, 2015
  3. Accepted Manuscript published: November 27, 2015 (version 1)
  4. Version of Record published: January 18, 2016 (version 2)

Copyright

© 2015, Vera et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,699
    Page views
  • 457
    Downloads
  • 41
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jorge Vera
  2. Lydia Lartigue
  3. Suzanne Vigneron
  4. Gilles Gadea
  5. Veronique Gire
  6. Maguy Del Rio
  7. Isabelle Soubeyran
  8. Frederic Chibon
  9. Thierry Lorca
  10. Anna Castro
(2015)
Greatwall promotes cell transformation by hyperactivating AKT in human malignancies
eLife 4:e10115.
https://doi.org/10.7554/eLife.10115

Share this article

https://doi.org/10.7554/eLife.10115

Further reading

    1. Cell Biology
    Kazuki Hanaoka, Kensuke Nishikawa ... Kouichi Funato
    Research Article

    Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)–plasma membrane (PM) and ER–Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus–vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.