Resolving dual binding conformations of cellulosome cohesin-dockerin complexes using single-molecule force spectroscopy

  1. Markus A Jobst
  2. Lukas F Milles
  3. Constantin Schoeler
  4. Wolfgang Ott
  5. Daniel B Fried
  6. Edward A Bayer
  7. Hermann E Gaub
  8. Michael A Nash  Is a corresponding author
  1. Ludwig-Maximilians-Universität München, Germany
  2. Kean University, United States
  3. Weizmann Institute of Science, Israel

Abstract

Receptor-ligand pairs are ordinarily thought to interact through a lock and key mechanism, where a unique molecular conformation is formed upon binding. Contrary to this paradigm, cellulosomal cohesin-dockerin (Coh-Doc) pairs are believed to interact through redundant dual binding modes consisting of two distinct conformations. Here, we combined site-directed mutagenesis and single-molecule force spectroscopy (SMFS) to study the unbinding of Coh:Doc complexes under force. We designed Doc mutations to knock out each binding mode, and compared their single-molecule unfolding patterns as they were dissociated from Coh using an atomic force microscope (AFM) cantilever. Although average bulk measurements were unable to resolve the differences in Doc binding modes due to the similarity of the interactions, with a single-molecule method we were able to discriminate the two modes based on distinct differences in their mechanical properties. We conclude that wild-type Doc from Clostridium thermocellum exocellulase Cel48S populates each binding mode with equal probability.

Article and author information

Author details

  1. Markus A Jobst

    Lehrstuhl für Angewandte Physik, Center for Nanoscience, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Lukas F Milles

    Lehrstuhl für Angewandte Physik, Center for Nanoscience, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Constantin Schoeler

    Lehrstuhl für Angewandte Physik, Center for Nanoscience, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Wolfgang Ott

    Lehrstuhl für Angewandte Physik, Center for Nanoscience, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Daniel B Fried

    Kean University, Union, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Edward A Bayer

    Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  7. Hermann E Gaub

    Lehrstuhl für Angewandte Physik, Center for Nanoscience, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Michael A Nash

    Lehrstuhl für Angewandte Physik, Center for Nanoscience, Ludwig-Maximilians-Universität München, Munich, Germany
    For correspondence
    michael.nash@lmu.de
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Jobst et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,532
    views
  • 406
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Markus A Jobst
  2. Lukas F Milles
  3. Constantin Schoeler
  4. Wolfgang Ott
  5. Daniel B Fried
  6. Edward A Bayer
  7. Hermann E Gaub
  8. Michael A Nash
(2015)
Resolving dual binding conformations of cellulosome cohesin-dockerin complexes using single-molecule force spectroscopy
eLife 4:e10319.
https://doi.org/10.7554/eLife.10319

Share this article

https://doi.org/10.7554/eLife.10319

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Kristina Ehring, Sophia Friederike Ehlers ... Kay Grobe
    Research Article

    The Sonic hedgehog (Shh) signaling pathway controls embryonic development and tissue homeostasis after birth. This requires regulated solubilization of dual-lipidated, firmly plasma membrane-associated Shh precursors from producing cells. Although it is firmly established that the resistance-nodulation-division transporter Dispatched (Disp) drives this process, it is less clear how lipidated Shh solubilization from the plasma membrane is achieved. We have previously shown that Disp promotes proteolytic solubilization of Shh from its lipidated terminal peptide anchors. This process, termed shedding, converts tightly membrane-associated hydrophobic Shh precursors into delipidated soluble proteins. We show here that Disp-mediated Shh shedding is modulated by a serum factor that we identify as high-density lipoprotein (HDL). In addition to serving as a soluble sink for free membrane cholesterol, HDLs also accept the cholesterol-modified Shh peptide from Disp. The cholesteroylated Shh peptide is necessary and sufficient for Disp-mediated transfer because artificially cholesteroylated mCherry associates with HDL in a Disp-dependent manner, whereas an N-palmitoylated Shh variant lacking C-cholesterol does not. Disp-mediated Shh transfer to HDL is completed by proteolytic processing of the palmitoylated N-terminal membrane anchor. In contrast to dual-processed soluble Shh with moderate bioactivity, HDL-associated N-processed Shh is highly bioactive. We propose that the purpose of generating different soluble forms of Shh from the dual-lipidated precursor is to tune cellular responses in a tissue-type and time-specific manner.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Gina Partipilo, Yang Gao ... Benjamin K Keitz
    Feature Article

    Troubleshooting is an important part of experimental research, but graduate students rarely receive formal training in this skill. In this article, we describe an initiative called Pipettes and Problem Solving that we developed to teach troubleshooting skills to graduate students at the University of Texas at Austin. An experienced researcher presents details of a hypothetical experiment that has produced unexpected results, and students have to propose new experiments that will help identify the source of the problem. We also provide slides and other resources that can be used to facilitate problem solving and teach troubleshooting skills at other institutions.