Vole Parenting: A fine line between attack and care

Oxytocin neuron projections from two brain regions involved in parental care regulate both parental care and infanticidal behaviors in virgin mandarin voles.
  1. Nicole Rigney  Is a corresponding author
  1. Social Neuroscience Laboratory, University of California, Los Angeles, United States

Oxytocin, commonly known as the 'love hormone', plays a vital role in social functioning, from pair bonding to parental care. It is well known for establishing early attachment between mothers and their infants as well as bonds between romantic partners.

Oxytocin is produced in the paraventricular nucleus of the hypothalamus, which transmits signals to regions in the brain rich in oxytocin receptors, such as the medial prefrontal cortex (mPFC). This area is involved in higher-order cognitive functions, including decision-making, behavioral flexibility and parental care (Froemke and Young, 2021; Rigney et al., 2022; Rilling and Sanfey, 2011; Dulac et al., 2014). Previous research has shown that increased oxytocin levels in the paraventricular nucleus are linked to parental care behavior (He et al., 2021). For example, oxytocin released from the paraventricular nucleus in mice enhances the importance of pup vocalizations (Carcea et al., 2021; Schiavo et al., 2020). Likewise, human studies have shown that activity in the mPFC increases when mothers hear their infants cry (Lorberbaum et al., 2002). This suggests that the projections of oxytocin neurons connecting the paraventricular nucleus to the mPFC may be involved in controlling parental care.

Parental care is critical for offspring survival in many species and the transition to parenthood is known to alter parental care motivation. Unlike many commonly studied laboratory rodents, both male and female mandarin voles are involved in caring for offspring (Young et al., 1998). However, both virgin males and females of this species can show aggression – often leading to infanticide – towards unrelated pups. This makes them an ideal model organism for studying the neurological basis of these contrasting behaviors. However, we do not fully understand how oxytocin influences the balance between care and infanticide. Now, in eLife, Fadao Tai, Zhixiong He and colleagues at Shaanxi Normal University in China – including Lu Li as first author – report new insights into the neural circuits underlying parental behavior and infanticide in mandarin voles (Li et al., 2024).

Li et al. used a combination of techniques, including immunohistochemistry, optogenetics and injecting oxytocin into the abdominal area, to reveal the neural mechanisms underlying parental care and infanticide (Figure 1). Activating oxytocin neurons in the paraventricular nucleus using optogenetic techniques reduced the time it took for males to approach and retrieve pups, a measurement of pup-directed behavior. However, this activation had no effect on females. Activating the same neurons in voles of both sexes showing infanticidal behaviors lowered their infanticidal tendencies, while inhibiting oxytocin neurons in this brain area promoted infanticide. This suggests that oxytocin-expressing neurons in the paraventricular nucleus can promote parental care and inhibit infanticide (Figure 1).

Oxytocin’s influence on parental behaviors in mandarin voles.

(A) Oxytocin neuronal projections (black line) running from the paraventricular nucleus (pink) of the hypothalamus (left) to the medial prefrontal cortex (pink triangle; right) releases oxytocin (white circles) (B) Stimulating these oxytocin projections in pup-caring voles increased pup care in male but not female voles (left). Oxytocin release increased in both males and females when caring for pups but decreased during attacks. In voles showing infanticidal behavior (right), stimulating the oxytocin projections delayed infanticidal attacks while inhibiting the neurons promoted infanticide in both sexes. PVN: paraventricular nucleus; mPFC: medial prefrontal cortex. This figure was created with BioRender.com.

Similarly, stimulating oxytocin projections from the paraventricular nucleus to the mPFC increased pup care behavior in males, but not females, while inhibiting these projections promoted infanticidal behavior in both sexes. Using a fluorescent sensor to detect oxytocin revealed that its release increased in the mPFC of both male and female voles when they exhibited parental care behaviors, such as approaching and retrieving pups, but decreased in both sexes when voles attacked pups. Next, Li et al. administered oxytocin into the abdominal cavity (a method that could possibly translate to a clinical application) and observed the same changes in behavior when oxytocin was applied in this way.

The different responses of males and females across various experiments suggest additional, potentially sex-specific mechanisms might be involved in regulating parental care. Previous work has shown that male mice without the oxytocin or oxytocin receptor genes have trouble picking up and moving their pups. This problem is less noticeable in female mice (Inada et al., 2022). This phenomenon could stem from multiple neural systems that drive maternal caregiving behaviors in females. These backup mechanisms would ensure that maternal care remains robust even if oxytocin signaling is disrupted.

Another explanation could be that females tend to have a higher neural oxytocin activity, a greater number of oxytocin neurons, more extensive axon projections and distinct receptor expression patterns (Häussler et al., 1990; Insel et al., 1991; Uhl-Bronner et al., 2005). This may limit the impact of oxytocin neuron manipulation on female pup care behaviors, as they could already function close to their maximum.

Overall, Li et al. revealed that oxytocin projections from the paraventricular nucleus to the mPFC regulate pup care and infanticidal behaviors in virgin mandarin voles. Collectively, oxytocin appears to act as a switch capable of promoting nurturing as well as aggressive responses toward pups, depending on the context and the individual. The findings open new avenues for exploring other oxytocin and neurotransmitter circuits that may influence these parental and aggressive behaviors, and the reasons for the observed sex differences.

References

    1. Häussler HU
    2. Jirikowski GF
    3. Caldwell JD
    (1990)
    Sex differences among oxytocin-immunoreactive neuronal systems in the mouse hypothalamus
    Journal of Chemical Neuroanatomy 3:271–276.

Article and author information

Author details

  1. Nicole Rigney

    Nicole Rigney is in the Social Neuroscience Laboratory, University of California, Los Angeles, United States

    For correspondence
    nrigney@g.ucla.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6315-8628

Publication history

  1. Version of Record published:

Copyright

© 2024, Rigney

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicole Rigney
(2024)
Vole Parenting: A fine line between attack and care
eLife 13:e103351.
https://doi.org/10.7554/eLife.103351

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Pamela Garcia-Saldivar, Cynthia de León ... Hugo Merchant
    Research Article Updated

    We determined the intersubject association between the rhythmic entrainment abilities of human subjects during a synchronization-continuation tapping task (SCT) and the macro- and microstructural properties of their superficial (SWM) and deep (DWM) white matter. Diffusion-weighted images were obtained from 32 subjects who performed the SCT with auditory or visual metronomes and five tempos ranging from 550 to 950 ms. We developed a method to determine the density of short-range fibers that run underneath the cortical mantle, interconnecting nearby cortical regions (U-fibers). Notably, individual differences in the density of U-fibers in the right audiomotor system were correlated with the degree of phase accuracy between the stimuli and taps across subjects. These correlations were specific to the synchronization epoch with auditory metronomes and tempos around 1.5 Hz. In addition, a significant association was found between phase accuracy and the density and bundle diameter of the corpus callosum (CC), forming an interval-selective map where short and long intervals were behaviorally correlated with the anterior and posterior portions of the CC. These findings suggest that the structural properties of the SWM and DWM in the audiomotor system support the tapping synchronization abilities of subjects, as cortical U-fiber density is linked to the preferred tapping tempo and the bundle properties of the CC define an interval-selective topography.

    1. Computational and Systems Biology
    2. Neuroscience
    Matthieu K Chardon, Y Curtis Wang ... Charles J Heckman
    Research Article

    In this study, we develop new reverse engineering (RE) techniques to identify the organization of the synaptic inputs generating firing patterns of populations of neurons. We tested these techniques in silico to allow rigorous evaluation of their effectiveness, using remarkably extensive parameter searches enabled by massively-parallel computation on supercomputers. We chose spinal motoneurons as our target neural system, since motoneurons process all motor commands and have well-established input-output properties. One set of simulated motoneurons was driven by 300,000+ simulated combinations of excitatory, inhibitory, and neuromodulatory inputs. Our goal was to determine if these firing patterns had sufficient information to allow RE identification of the input combinations. Like other neural systems, the motoneuron input-output system is likely non-unique. This non-uniqueness could potentially limit this RE approach, as many input combinations can produce similar outputs. However, our simulations revealed that firing patterns contained sufficient information to sharply restrict the solution space. Thus, our RE approach successfully generated estimates of the actual simulated patterns of excitation, inhibition, and neuromodulation, with variances accounted for ranging from 75–90%. It was striking that nonlinearities induced in firing patterns by the neuromodulation inputs did not impede RE, but instead generated distinctive features in firing patterns that aided RE. These simulations demonstrate the potential of this form of RE analysis. It is likely that the ever-increasing capacity of supercomputers will allow increasingly accurate RE of neuron inputs from their firing patterns from many neural systems.