Vole Parenting: A fine line between attack and care
Oxytocin, commonly known as the 'love hormone', plays a vital role in social functioning, from pair bonding to parental care. It is well known for establishing early attachment between mothers and their infants as well as bonds between romantic partners.
Oxytocin is produced in the paraventricular nucleus of the hypothalamus, which transmits signals to regions in the brain rich in oxytocin receptors, such as the medial prefrontal cortex (mPFC). This area is involved in higher-order cognitive functions, including decision-making, behavioral flexibility and parental care (Froemke and Young, 2021; Rigney et al., 2022; Rilling and Sanfey, 2011; Dulac et al., 2014). Previous research has shown that increased oxytocin levels in the paraventricular nucleus are linked to parental care behavior (He et al., 2021). For example, oxytocin released from the paraventricular nucleus in mice enhances the importance of pup vocalizations (Carcea et al., 2021; Schiavo et al., 2020). Likewise, human studies have shown that activity in the mPFC increases when mothers hear their infants cry (Lorberbaum et al., 2002). This suggests that the projections of oxytocin neurons connecting the paraventricular nucleus to the mPFC may be involved in controlling parental care.
Parental care is critical for offspring survival in many species and the transition to parenthood is known to alter parental care motivation. Unlike many commonly studied laboratory rodents, both male and female mandarin voles are involved in caring for offspring (Young et al., 1998). However, both virgin males and females of this species can show aggression – often leading to infanticide – towards unrelated pups. This makes them an ideal model organism for studying the neurological basis of these contrasting behaviors. However, we do not fully understand how oxytocin influences the balance between care and infanticide. Now, in eLife, Fadao Tai, Zhixiong He and colleagues at Shaanxi Normal University in China – including Lu Li as first author – report new insights into the neural circuits underlying parental behavior and infanticide in mandarin voles (Li et al., 2024).
Li et al. used a combination of techniques, including immunohistochemistry, optogenetics and injecting oxytocin into the abdominal area, to reveal the neural mechanisms underlying parental care and infanticide (Figure 1). Activating oxytocin neurons in the paraventricular nucleus using optogenetic techniques reduced the time it took for males to approach and retrieve pups, a measurement of pup-directed behavior. However, this activation had no effect on females. Activating the same neurons in voles of both sexes showing infanticidal behaviors lowered their infanticidal tendencies, while inhibiting oxytocin neurons in this brain area promoted infanticide. This suggests that oxytocin-expressing neurons in the paraventricular nucleus can promote parental care and inhibit infanticide (Figure 1).
Similarly, stimulating oxytocin projections from the paraventricular nucleus to the mPFC increased pup care behavior in males, but not females, while inhibiting these projections promoted infanticidal behavior in both sexes. Using a fluorescent sensor to detect oxytocin revealed that its release increased in the mPFC of both male and female voles when they exhibited parental care behaviors, such as approaching and retrieving pups, but decreased in both sexes when voles attacked pups. Next, Li et al. administered oxytocin into the abdominal cavity (a method that could possibly translate to a clinical application) and observed the same changes in behavior when oxytocin was applied in this way.
The different responses of males and females across various experiments suggest additional, potentially sex-specific mechanisms might be involved in regulating parental care. Previous work has shown that male mice without the oxytocin or oxytocin receptor genes have trouble picking up and moving their pups. This problem is less noticeable in female mice (Inada et al., 2022). This phenomenon could stem from multiple neural systems that drive maternal caregiving behaviors in females. These backup mechanisms would ensure that maternal care remains robust even if oxytocin signaling is disrupted.
Another explanation could be that females tend to have a higher neural oxytocin activity, a greater number of oxytocin neurons, more extensive axon projections and distinct receptor expression patterns (Häussler et al., 1990; Insel et al., 1991; Uhl-Bronner et al., 2005). This may limit the impact of oxytocin neuron manipulation on female pup care behaviors, as they could already function close to their maximum.
Overall, Li et al. revealed that oxytocin projections from the paraventricular nucleus to the mPFC regulate pup care and infanticidal behaviors in virgin mandarin voles. Collectively, oxytocin appears to act as a switch capable of promoting nurturing as well as aggressive responses toward pups, depending on the context and the individual. The findings open new avenues for exploring other oxytocin and neurotransmitter circuits that may influence these parental and aggressive behaviors, and the reasons for the observed sex differences.
References
-
Oxytocin, neural plasticity, and social behaviorAnnual Review of Neuroscience 44:359–381.https://doi.org/10.1146/annurev-neuro-102320-102847
-
Sex differences among oxytocin-immunoreactive neuronal systems in the mouse hypothalamusJournal of Chemical Neuroanatomy 3:271–276.
-
Paraventricular nucleus oxytocin subsystems promote active paternal behaviors in mandarin volesThe Journal of Neuroscience 41:6699–6713.https://doi.org/10.1523/JNEUROSCI.2864-20.2021
-
A potential role for thalamocingulate circuitry in human maternal behaviorBiological Psychiatry 51:431–445.https://doi.org/10.1016/S0006-3223(01)01284-7
-
The neuroscience of social decision-makingAnnual Review of Psychology 62:23–48.https://doi.org/10.1146/annurev.psych.121208.131647
-
Neuroendocrine bases of monogamyTrends in Neurosciences 21:71–75.https://doi.org/10.1016/s0166-2236(97)01167-3
Article and author information
Author details
Publication history
Copyright
© 2024, Rigney
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 386
- views
-
- 36
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Non-linear summation of synaptic inputs to the dendrites of pyramidal neurons has been proposed to increase the computation capacity of neurons through coincidence detection, signal amplification, and additional logic operations such as XOR. Supralinear dendritic integration has been documented extensively in principal neurons, mediated by several voltage-dependent conductances. It has also been reported in parvalbumin-positive hippocampal basket cells, in dendrites innervated by feedback excitatory synapses. Whether other interneurons, which support feed-forward or feedback inhibition of principal neuron dendrites, also exhibit local non-linear integration of synaptic excitation is not known. Here, we use patch-clamp electrophysiology, and two-photon calcium imaging and glutamate uncaging, to show that supralinear dendritic integration of near-synchronous spatially clustered glutamate-receptor mediated depolarization occurs in NDNF-positive neurogliaform cells and oriens-lacunosum moleculare interneurons in the mouse hippocampus. Supralinear summation was detected via recordings of somatic depolarizations elicited by uncaging of glutamate on dendritic fragments, and, in neurogliaform cells, by concurrent imaging of dendritic calcium transients. Supralinearity was abolished by blocking NMDA receptors (NMDARs) but resisted blockade of voltage-gated sodium channels. Blocking L-type calcium channels abolished supralinear calcium signalling but only had a minor effect on voltage supralinearity. Dendritic boosting of spatially clustered synaptic signals argues for previously unappreciated computational complexity in dendrite-projecting inhibitory cells of the hippocampus.
-
- Neuroscience
Predicting an individual’s cognitive traits or clinical condition using brain signals is a central goal in modern neuroscience. This is commonly done using either structural aspects, such as structural connectivity or cortical thickness, or aggregated measures of brain activity that average over time. But these approaches are missing a central aspect of brain function: the unique ways in which an individual’s brain activity unfolds over time. One reason why these dynamic patterns are not usually considered is that they have to be described by complex, high-dimensional models; and it is unclear how best to use these models for prediction. We here propose an approach that describes dynamic functional connectivity and amplitude patterns using a Hidden Markov model (HMM) and combines it with the Fisher kernel, which can be used to predict individual traits. The Fisher kernel is constructed from the HMM in a mathematically principled manner, thereby preserving the structure of the underlying model. We show here, in fMRI data, that the HMM-Fisher kernel approach is accurate and reliable. We compare the Fisher kernel to other prediction methods, both time-varying and time-averaged functional connectivity-based models. Our approach leverages information about an individual’s time-varying amplitude and functional connectivity for prediction and has broad applications in cognitive neuroscience and personalised medicine.