Axial contraction and short-range compaction of chromatin synergistically promote mitotic chromosome condensation

  1. Tom Kruitwagen
  2. Annina Denoth-Lippuner
  3. Bryan J Wilkins
  4. Heinz Neumann
  5. Yves Barral  Is a corresponding author
  1. Eidgenössische Technische Hochschule Zürich, Switzerland
  2. Georg- August University Göttingen

Abstract

The mitotic segregation of chromosomes requires their extensive folding into units of manageable size. Here, we report on how phosphorylation at serine 10 of histone H3 contributes to this process. We developed a fluorescence-based assay to study local compaction of chromatin in living yeast cells and show that chromosome condensation entails two temporally and mechanistically independent processes. Initially, nucleosome-nucleosome interactions triggered by phosphorylation of S10 on H3 and deacetylation of K16 on histone H4 promote short-range compaction of chromatin during early mitosis. Subsequently, condensin mediates the axial contraction of chromosome arms, peaking in late anaphase. Whereas defects in chromatin compaction did not impair axial contraction and condensin inactivation did not affect short-range chromatin compaction, inactivation of both pathways caused synergistic defects in chromosome segregation and cell viability. Interestingly, both pathways rely on the deacetylase Hst2, suggesting that Hst2 coordinates chromatin compaction and axial contraction to shape mitotic chromosomes.

Article and author information

Author details

  1. Tom Kruitwagen

    Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
    Competing interests
    No competing interests declared.
  2. Annina Denoth-Lippuner

    Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
    Competing interests
    No competing interests declared.
  3. Bryan J Wilkins

    Free Floater (Junior) Research Group Applied Synthetic Biology, Georg- August University Göttingen
    Competing interests
    Bryan J Wilkins, : Conception and design: NoAcquisition of data: YesAnalysis and interpretation of data: YesDrafting or revising the article: NoContributed unpublished essential data or reagents: No.
  4. Heinz Neumann

    Free Floater (Junior) Research Group Applied Synthetic Biology, Georg- August University Göttingen
    Competing interests
    Heinz Neumann, : Conception and design: NoAcquisition of data: NoAnalysis and interpretation of data: YesDrafting or revising the article: YesContributed unpublished essential data or reagents: No.
  5. Yves Barral

    Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
    For correspondence
    yves.barral@bc.biol.ethz.ch
    Competing interests
    No competing interests declared.

Copyright

© 2015, Kruitwagen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,331
    views
  • 750
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tom Kruitwagen
  2. Annina Denoth-Lippuner
  3. Bryan J Wilkins
  4. Heinz Neumann
  5. Yves Barral
(2015)
Axial contraction and short-range compaction of chromatin synergistically promote mitotic chromosome condensation
eLife 4:e10396.
https://doi.org/10.7554/eLife.10396

Share this article

https://doi.org/10.7554/eLife.10396

Further reading

    1. Cell Biology
    2. Medicine
    Shuo He, Lei Huang ... Jinlong He
    Research Article

    Disturbed shear stress-induced endothelial atherogenic responses are pivotal in the initiation and progression of atherosclerosis, contributing to the uneven distribution of atherosclerotic lesions. This study investigates the role of Aff3ir-ORF2, a novel nested gene variant, in disturbed flow-induced endothelial cell activation and atherosclerosis. We demonstrate that disturbed shear stress significantly reduces Aff3ir-ORF2 expression in athero-prone regions. Using three distinct mouse models with manipulated Aff3ir-ORF2 expression, we demonstrate that Aff3ir-ORF2 exerts potent anti-inflammatory and anti-atherosclerotic effects in Apoe-/- mice. RNA sequencing revealed that interferon regulatory factor 5 (Irf5), a key regulator of inflammatory processes, mediates inflammatory responses associated with Aff3ir-ORF2 deficiency. Aff3ir-ORF2 interacts with Irf5, promoting its retention in the cytoplasm, thereby inhibiting the Irf5-dependent inflammatory pathways. Notably, Irf5 knockdown in Aff3ir-ORF2 deficient mice almost completely rescues the aggravated atherosclerotic phenotype. Moreover, endothelial-specific Aff3ir-ORF2 supplementation using the CRISPR/Cas9 system significantly ameliorated endothelial activation and atherosclerosis. These findings elucidate a novel role for Aff3ir-ORF2 in mitigating endothelial inflammation and atherosclerosis by acting as an inhibitor of Irf5, highlighting its potential as a valuable therapeutic approach for treating atherosclerosis.

    1. Cell Biology
    2. Genetics and Genomics
    Róża K Przanowska, Yuechuan Chen ... Anindya Dutta
    Research Article

    The six-subunit ORC is essential for the initiation of DNA replication in eukaryotes. Cancer cell lines in culture can survive and replicate DNA replication after genetic inactivation of individual ORC subunits, ORC1, ORC2, or ORC5. In primary cells, ORC1 was dispensable in the mouse liver for endo-reduplication, but this could be explained by the ORC1 homolog, CDC6, substituting for ORC1 to restore functional ORC. Here, we have created mice with a conditional deletion of ORC2, which does not have a homolog. Although mouse embryo fibroblasts require ORC2 for proliferation, mouse hepatocytes synthesize DNA in cell culture and endo-reduplicate in vivo without ORC2. Mouse livers endo-reduplicate after simultaneous deletion of ORC1 and ORC2 both during normal development and after partial hepatectomy. Since endo-reduplication initiates DNA synthesis like normal S phase replication these results unequivocally indicate that primary cells, like cancer cell lines, can load MCM2-7 and initiate replication without ORC.