Mapping translation 'hot-spots' in live cells by tracking single molecules of mRNA and ribosomes

  1. Zachary B Katz
  2. Brian p English
  3. Timothée Lionnet
  4. Young J Yoon
  5. Nilah Monnier
  6. Ben Ovryn
  7. Mark Bathe
  8. Robert H Singer  Is a corresponding author
  1. Albert Einstein College of Medicine, United States
  2. Janelia Research Campus, Howard Hughes Medical Institute, United States
  3. Stanford University School of Medicine, United States
  4. Massachusetts Institute of Technology, United States

Abstract

Messenger RNA localization is important for cell motility by local protein translation. However, while single mRNAs can be imaged and their movements tracked in single cells, it has not yet been possible to determine whether these mRNAs are actively translating. Therefore, we imaged single β-actin mRNAs tagged with MS2 stem loops colocalizing with labeled ribosomes to determine when polysomes formed. A dataset of tracking information consisting of thousands of trajectories per cell demonstrated that mRNAs co-moving with ribosomes have significantly different diffusion properties from non-translating mRNAs that were exposed to translation inhibitors. This data indicates that ribosome load changes mRNA movement and therefore highly translating mRNAs move slower. Importantly, β-actin mRNA near focal adhesions exhibited sub-diffusive corralled movement characteristic of increased translation. This method can identify where ribosomes become engaged for local protein production and how spatial regulation of mRNA-protein interactions mediates cell directionality.

Article and author information

Author details

  1. Zachary B Katz

    Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  2. Brian p English

    Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  3. Timothée Lionnet

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  4. Young J Yoon

    Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  5. Nilah Monnier

    Department of Genetics, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  6. Ben Ovryn

    Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  7. Mark Bathe

    Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  8. Robert H Singer

    Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, United States
    For correspondence
    robert.singer@einstein.yu.edu
    Competing interests
    Robert H Singer, Reviewing editor, eLife.

Copyright

© 2016, Katz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,279
    views
  • 2,073
    downloads
  • 114
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zachary B Katz
  2. Brian p English
  3. Timothée Lionnet
  4. Young J Yoon
  5. Nilah Monnier
  6. Ben Ovryn
  7. Mark Bathe
  8. Robert H Singer
(2016)
Mapping translation 'hot-spots' in live cells by tracking single molecules of mRNA and ribosomes
eLife 5:e10415.
https://doi.org/10.7554/eLife.10415

Share this article

https://doi.org/10.7554/eLife.10415

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Assmaa Elsheikh, Camden M Driggers ... Show-Ling Shyng
    Research Article

    Pancreatic KATP channel trafficking defects underlie congenital hyperinsulinism (CHI) cases unresponsive to the KATP channel opener diazoxide, the mainstay medical therapy for CHI. Current clinically used KATP channel inhibitors have been shown to act as pharmacochaperones and restore surface expression of trafficking mutants; however, their therapeutic utility for KATP trafficking-impaired CHI is hindered by high affinity binding, which limits functional recovery of rescued channels. Recent structural studies of KATP channels employing cryo-electron microscopy (cryoEM) have revealed a promiscuous pocket where several known KATP pharmacochaperones bind. The structural knowledge provides a framework for discovering KATP channel pharmacochaperones with desired reversible inhibitory effects to permit functional recovery of rescued channels. Using an AI-based virtual screening technology AtomNet followed by functional validation, we identified a novel compound, termed Aekatperone, which exhibits chaperoning effects on KATP channel trafficking mutations. Aekatperone reversibly inhibits KATP channel activity with a half-maximal inhibitory concentration (IC50) ~9 μM. Mutant channels rescued to the cell surface by Aekatperone showed functional recovery upon washout of the compound. CryoEM structure of KATP bound to Aekatperone revealed distinct binding features compared to known high affinity inhibitor pharmacochaperones. Our findings unveil a KATP pharmacochaperone enabling functional recovery of rescued channels as a promising therapeutic for CHI caused by KATP trafficking defects.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Andrew P Latham, Longchen Zhu ... Bin Zhang
    Research Article

    The phase separation of intrinsically disordered proteins is emerging as an important mechanism for cellular organization. However, efforts to connect protein sequences to the physical properties of condensates, that is, the molecular grammar, are hampered by a lack of effective approaches for probing high-resolution structural details. Using a combination of multiscale simulations and fluorescence lifetime imaging microscopy experiments, we systematically explored a series of systems consisting of diblock elastin-like polypeptides (ELPs). The simulations succeeded in reproducing the variation of condensate stability upon amino acid substitution and revealed different microenvironments within a single condensate, which we verified with environmentally sensitive fluorophores. The interspersion of hydrophilic and hydrophobic residues and a lack of secondary structure formation result in an interfacial environment, which explains both the strong correlation between ELP condensate stability and interfacial hydrophobicity scales, as well as the prevalence of protein-water hydrogen bonds. Our study uncovers new mechanisms for condensate stability and organization that may be broadly applicable.