Drosophila hamlet mediates epithelial tissue assembly of the reproductive system

  1. Huazhen Wang
  2. Ludivine Bertonnier-Brouty
  3. Isabella Artner
  4. Jiayu Wen  Is a corresponding author
  5. Qi Dai  Is a corresponding author
  1. Department of Molecular Bioscience, the Wenner-Gren Institute, Stockholm University, Sweden
  2. Lund University, Sweden
  3. Lund University Diabetes Center, Lund University, Sweden
  4. Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, and Australian Research Council Centre of Excellence for the Mathematical Analysis of Cellular Systems, Australia
8 figures, 1 table and 5 additional files

Figures

Figure 1 with 2 supplements
ham is expressed and required for Drosophila male reproductive system (RS) development.

(A) The adult male RS. TE, testis; SV, seminal vesicle; AG, accessory gland; EJD, ejaculatory duct. (B) White-field images of adult male RS, showing defective morphology in the ham mutants. (C) Quantification of male fertility. Ham_sfGFP with the ham genomic region was used to rescue the sterility. Statistical significance was calculated using unpaired t-test (***p < 0.001; **p < 0.01; n.s., non-significant). (D) Images of the adult RS stained with Ham_V5 in red. DNA is stained with DAPI in blue. The blue and white dashed lines highlight the TE and SV, respectively. (E) Illustration of the developing male RS at the larval stage. The testis (TE) terminal epithelial cells localize at the opposite side of the germline stem cell (GSC) niche. The genital disc (GD) contains mesenchymal cells (MC) that will develop into the SV and accessory gland (ag). (F) Images of the larval TE (top) and GD (bottom) stained with Ham_V5 in red or magenta, the reporter in lime-green (btlGal4 driving UAS-GFP) and DAPI in blue. AEL, after egg laying. (G) Illustration of the TE and SV fusion process. APF, after pupal formation. (H) Images of the pupal GD stained with Ham_V5 in magenta, the reporter in lime-green (btlGal4 driving UAS-GFP) and DAPI in blue. (I) Images of the pupal RS with Ham_V5 in red and DAPI in blue. The blue and white dashed lines highlight the TE and SV, respectively. (J) Higher magnification image of the joint site between the SV and TE, with myoblasts and myotubes labeled by mef2Gal4>GFP in lime-green.

Figure 1—figure supplement 1
Ham gene locus and mutant alleles.

(A) Illustration of the ham genomic locus and predicted protein isoforms, highlighting the mutation sites for the three mutant alleles and the protein domains of each isoform. All Ham protein isoforms maintain a functionally unknown motif PTZ00121 and the C-terminal zinc finger (ZF) clusters, while the long isoforms B/D and G also comprise the PR domain, the N-terminal ZF clusters. Isoform H has a truncated PR domain, and the shortest isoform E lacks the PR domain and the N-terminal ZF clusters. (B) Flanking sequences of the sgRNA target site from wt and four alleles with indels. Red letters indicate the sgRNA sequence. The corresponding amino acid sequence is shown above. ‘*’ indicates the stop codon. (C) An image from western-blot, showing the two Ham protein bands in the control samples and absence of the Ham band(s) in the indicated mutants. ‘*’ indicates an unspecific band, used as the loading control. (D) A table showing viability and sensory organ (SO) defects in four ham alleles. Note: the –6nt allele has a 6-nucleotide in-frame deletion. (E) Mechano-sensory organ phenotypes in the three indicated alleles. Red arrowheads indicate double sockets and double shafts phenotype.

Figure 1—figure supplement 1—source data 1

This zip archive contains the raw unedited western blot shown in Figure 1—figure supplement 1C.

https://cdn.elifesciences.org/articles/104164/elife-104164-fig1-figsupp1-data1-v1.zip
Figure 1—figure supplement 1—source data 2

This zip archive contains the original western blot shown in Figure 1-figure supplement 1C with relevant band labeled.

https://cdn.elifesciences.org/articles/104164/elife-104164-fig1-figsupp1-data2-v1.zip
Figure 1—figure supplement 2
Ham expression and function in the female reproductive system (RS).

(A) Bright-field images of the adult female RS from the indicated genotypes, showing accumulated eggs in the ham mutant ovaries. (B) Quantification of the number of progenies produced by wild-type and ham mutant females after crossed with wild-type males. Statistical significance was calculated using unpaired t-test (***p < 0.001). (C) Images of pupal and adult ovaries and oviducts, showing high expression of the Ham_V5 protein in the connecting sites of the ovaries and oviducts.

Figure 2 with 3 supplements
Ham promotes differentiation of the TE terminal and seminal vesicle (SV) epithelial cells.

(A) Images of the male reproductive system (RS) at the pupal stage, showing morphological defects of the TE and SV in the ham mutants. Epithelial cells are labeled with Coracle (Cor). The phenotype penetrance (%) and number of animals (n) counted are indicated as % (n). (B) High magnification images of the connection site of the TE and SV, showing that the ham mutant RS failed to form a continuous tube. Ham-sfGFP restored the normal morphology. Epithelial cells are marked by E-Cad in red, Cor in yellow, and the epithelium on the SV side also marked by btlGal4 driving UAS-mCD8GFP. DNA is labeled by DAPI in blue. (C) Images and quantification of the E-Cad signal in the wt and hamPRΔ mutant SV. n = 5. (D) Images and quantification of the Crumbs signal in the wt and hamPRΔ /Df mutant SV. n = 4. (E) Images and quantification of the length of Cor signal in the wt and hamPRΔ mutant SV. n = 6. (F) Images of ham mutant mosaic clones in the TE terminal epithelial cells. Note, the mutant cells are GFP negative and within the area surrounded by the white dashed line. The white arrows indicate junctions between mutant cells, while the yellow arrows highlight the junctions between wild-type cells. n = 3. (G) Images of pupal male genital disc (GD), showing that hamRNAi-mediated knockdown reproduces ham mutant phenotypes. (H) Images of pupal male RS, stained with E-Cad in red, Ham in yellow, GFP in green and DAPI in blue. UAS-dcr2 enhanced knockdown efficiency and led to more severe morphological defects. (I) Images and quantification of E-Cad signal in red and Cor length in blue in control and ham RNAi SV. n = 4. (J) Images and quantification of E-Cad signal in control and ham RNAi TE terminal epithelium. n = 4. In the quantification graphs, statistical significance was calculated using unpaired t-test except for TE mosaic clones in F which used paired t-test (**** p < 0.0001, ***p < 0.001; **p < 0.01; *p < 0.05; ns, non-significant).

Figure 2—source data 1

Quantification of the E-Cad signal in the wt and hamPRΔ mutant SV shown in Figure 2C.

https://cdn.elifesciences.org/articles/104164/elife-104164-fig2-data1-v1.xlsx
Figure 2—source data 2

Quantification of the Crumbs signal in the wt and hamPRΔ /Df mutant SV shown in Figure 2D.

https://cdn.elifesciences.org/articles/104164/elife-104164-fig2-data2-v1.xlsx
Figure 2—source data 3

Quantification of the length of Cor signal in the wt and hamPRΔ mutant SV shown in Figure 2E.

https://cdn.elifesciences.org/articles/104164/elife-104164-fig2-data3-v1.xlsx
Figure 2—source data 4

Quantification of the E-Cad signal at the border between two wt and between two hamSK1 mutant cells in the TE terminal epithelium shown in Figure 2F.

https://cdn.elifesciences.org/articles/104164/elife-104164-fig2-data4-v1.xlsx
Figure 2—source data 5

Quantification of E-Cad signal in GFP and ham.RNAi SV shown in Figure 2I.

https://cdn.elifesciences.org/articles/104164/elife-104164-fig2-data5-v1.xlsx
Figure 2—source data 6

Quantification of E-Cad signal in GFP and ham.RNAi TE terminal epithelium shown in Figure 2J.

https://cdn.elifesciences.org/articles/104164/elife-104164-fig2-data6-v1.xlsx
Figure 2—figure supplement 1
Split channel images for images in Figure 2.
Figure 2—figure supplement 2
Ham controls the formation of TE epithelial cells.

(A) Images of the testes from the early L3 larval stage, showing the absence of or mis-polarized TE terminal epithelial cell cluster in the ham mutant. E-Cad marks epithelial cells in green and DAPI marks the nuclei. The white arrows indicate mis-polarized epithelial cells. (B) Illustration of the precursor cell clusters of the male reproductive system (RS) in the embryonic stages. PGC, primordium germ cells; SGPs, somatic gonadal precursors; msSGP, male-specific SGPs. (C–E) Images of stage S13 and S15 wt embryos, showing Ham staining in all SGPs. Abd-B and Sox100B label msSGPs, VASA labels PGCs. Images of the wt and ham mutant embryos at S13 (F) and S15 (G), showing the reduction or absence of msSGPs in the hamSK1 mutant. Vasa in magenta is a germ cell marker, and Sox100B labels msSGPs in lime-green.

Figure 2—figure supplement 3
An epithelial-specific Gal4 line in the ham locus.

(A) The ham gene locus, indicating the fragments in the Gal4 transgenes. The one (hamRSGal4) that drives reporter gene expression in the reproductive system (RS) epithelial cells is highlighted in orange. (B) Images of pupal genital disc and TE in animals with hamRSGal4 and UAS-mCD8GFP. Ham_V5 is stained in magenta, and DAPI in blue. (C) Images showing the presence of myotubes on the surface of the testis. The bar graph on the right shows the relative abundance of myotubes on the testis in wt (100%) and ham mutant condition quantified from five animals each. (D) Images showing the junction between the TE and seminal vesicle (SV), and myotubes are present even in the ham mutant. The white arrows indicate myotubes with two or three nuclei at the junction.

Figure 2—figure supplement 3—source data 1

Quantification of myotube number on the testis in wt and hamPRΔ/Df shown in Figure 2—figure supplement 3C.

https://cdn.elifesciences.org/articles/104164/elife-104164-fig2-figsupp3-data1-v1.xlsx
Figure 3 with 1 supplement
Identification of Ham-regulated genes in the developing TE and genital disc (GD).

(A) Illustration of the sample types and antibodies used in the RNA-seq and CUT&TAG experiments. (B) Venn diagram of dysregulated genes between the two mutant conditions in the GD (left) and TE (right) samples. (C) Heatmaps of Ham CUT&TAG peak density and IgG control, ranked from high to low and centered at peak summits. (D) Venn diagrams of CUT&TAG peaks from the two types of samples. Volcano plots of dysregulated genes in GD (E) and TE (F) in the hamSK1/Df mutant, and the ones with at least one Ham CUT&TAG peak are highlighted.

Figure 3—figure supplement 1
Ham regulatory activity and potential co-factors.

(A) Principle component analysis of the RNA-seq datasets. (B) Principle component analysis of the Cut&Tag datasets. Note: some samples had poor sequencing depth, which were excluded from the PCA and later analyses. (C) The shot locus, showing the CUT&TAG tracks from the TE and GD (TG) mixed samples and the enhancer fragments in the luciferase assays. (D) Normalized luciferase activity to the empty reporter and then to the control vector that expresses GFP and RFP proteins. Each plot represents the average from three biological replicates with each biological replicate having four technical replicates. Statistical significance was calculated using unpaired t-test (****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05). (E) Significantly enriched motifs from Ham binding peaks in upregulated genes (left) and downregulated genes (right). The dashed rectangles highlight MAD and ZNF263 motifs.

Ham activates expression of epithelial differentiation genes.

(A) Ham gene network analysis from STRING. The position of MCL clusters were manually adjusted to place genes with similar function in close proximity. The functional categories were determined by gene function tools in STRING. (B) A bar plot of the log2 fold-change value from RNA-seq for wnt2, shot, and shg, showing downregulation of these genes in the hamSK1/Df mutant. (C) Schemes of the Ham_FL and other truncation proteins, and illustration of the luciferase reporter assay. (D, E) A genome browser snapshot of the shg and wnt2 loci, showing the CUT&TAG tracks from the TE and GD (TG) mixed samples and the enhancer fragments in the luciferase assays. (F, G) Normalized luciferase activity to the empty reporter and then to the control vector that expresses GFP and RFP proteins. Each plot represents the average from three biological replicates with each biological replicate having four technical replicates. Statistical significance was calculated using unpaired t-test (****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05; ns, non-significant).

Figure 5 with 2 supplements
A candidate RNAi screen identified Ham-downstream effectors in reproductive system (RS) epithelial tissue fusion.

(A) Scheme for the RNAi screen. (B) Summary of positive hits. The extent of sterility is determined by the number of progenies from the F1 male crossing to the wild-type female (see Methods). 100% means no progeny. >70%, the number of progenies being fewer than 30% of the number of progenies produced by the control cross (the same Gal4 driver × UAS-GFPRNAi). 40–70%, the number of progenies being between 30% and 60% of the number of progenies produced by the control. (C) Images of the control and gene-specific RNAi knockdown RS. The left panels show the fusion site stained with E-Cad in magenta, GFP in lime-green, Ham in gray and DAPI in blue, the middle panels are genital disc (GD), and the right ones are TE. The orange arrows indicate mobilized epithelial cells in the shg knockdown TE.

Figure 5—source data 1

Results for a candidate RNAi screen shown in Figure 5A.

https://cdn.elifesciences.org/articles/104164/elife-104164-fig5-data1-v1.xlsx
Figure 5—source data 2

The extent of sterility for positive hits from the RNAi screen shown in Figure 5B.

https://cdn.elifesciences.org/articles/104164/elife-104164-fig5-data2-v1.xlsx
Figure 5—figure supplement 1
Split channel images for images in Figure 5.
Figure 5—figure supplement 2
Split channel images for images in Figure 5.
Figure 6 with 5 supplements
Spatial–temporal expression dynamics of Ham downstream genes.

(A) Images from multiplexed in situ hybridization (the SCRINSHOT method), showing mRNA signal of the indicated genes in wt TE samples. DNA is marked by DAPI in gray. (B) Images from SCRINSHOT, showing mRNA signals of indicated genes in wt/Df and hamSK1/Df mutant GD. The last panel is an enlarged view from the sample with Tl, ham, and spz probes. The yellow arrowheads indicate myoblast cells with Tl signal. (C) Quantification of signal intensity for genes shown in B in two areas, the SV and EjD. Statistical significance was calculated using unpaired t-test (***p < 0.001; **p < 0.01; *p < 0.05; ns, non-significant). (D) Images from SCRINSHOT, showing mRNA signals of indicated genes in GFP and ham RNAi GD samples. (E) Quantification of signal intensity for genes shown in D in two areas, the SV and EjD. Statistical significance was calculated using unpaired t-test (***p < 0.001; **p < 0.01; *p < 0.05; ns, non-significant). (F) A summary of genes expressed in the TE terminal and SV epithelium. Highlighted genes show temporal or spatial dynamic expression in the two tissues.

Figure 6—source data 1

Quantification of SCRINSHOT signal intensity changes for indicated genes between hamSK1/Df and wt/Df in the areas of SV and EjD, as shown in Figure 6C.

https://cdn.elifesciences.org/articles/104164/elife-104164-fig6-data1-v1.xlsx
Figure 6—source data 2

Quantification of SCRINSHOT signal intensity changes for indicated genes between hamRNAi and GFPRNAi in the areas of SV and EjD, as shown in Figure 6E.

https://cdn.elifesciences.org/articles/104164/elife-104164-fig6-data2-v1.xlsx
Figure 6—figure supplement 1
Expression of genes tested by SCRINSHOT in RNA-seq data.

(A) Log2FC (hamSK1/Df versus wt/Df and hamPRΔ versus wt) in TE. (B) Log2FC (hamSK1/Df versus wt/Df and hamPRΔ versus wt) in genital disc (GD).

Figure 6—figure supplement 2
Split channel images for images in Figure 6.
Figure 6—figure supplement 3
Additional genes tested in SCRINSHOT.

(A) Images from SCRINSHOT, showing mRNA signal of the indicated genes in wt TE samples. DNA is marked by DAPI in gray. (B) Images from SCRINSHOT, showing mRNA signal of the indicated genes in wt TE samples at a later pupal stage (28–32 APF). DNA is marked by DAPI in gray. (C) Images from SCRINSHOT, showing mRNA signals of indicated genes in wt/Df and hamSK1/Df mutant GDs. (D) Images from SCRINSHOT, showing mRNA signals of indicated genes in GFP and ham RNAi GD samples. (E, F) Quantification of signal intensity for genes shown in C and D in two areas, the SV and EjD. (G) Quantification of signal intensity for genes that changed expression in ham RNAi TE. Statistical significance was calculated using unpaired t-test (***p < 0.001; **p < 0.01; *p < 0.05; ns, non-significant).

Figure 6—figure supplement 3—source data 1

Quantification of SCRINSHOT signal intensity changes for indicated genes between hamSK1/Df and wt/Df in the areas of SV and EjD, as shown in Figure 6—figure supplement 3E.

https://cdn.elifesciences.org/articles/104164/elife-104164-fig6-figsupp3-data1-v1.xlsx
Figure 6—figure supplement 3—source data 2

Quantification of SCRINSHOT signal intensity changes for indicated genes between hamRNAi and GFPRNAi in the areas of SV and EjD, as shown in Figure 6—figure supplement 3F.

https://cdn.elifesciences.org/articles/104164/elife-104164-fig6-figsupp3-data2-v1.xlsx
Figure 6—figure supplement 3—source data 3

Quantification of signal intensity for genes that changed expression in ham RNAi TE shown in Figure 6—figure supplement 3G.

https://cdn.elifesciences.org/articles/104164/elife-104164-fig6-figsupp3-data3-v1.xlsx
Figure 6—figure supplement 4
Split channel images for images in Figure 6—figure supplement 3.
Figure 6—figure supplement 5
Additional split channel images for the images in Figure 6—figure supplement 3.
Figure 7 with 1 supplement
Wnt2 and its ligand genes are required for male fertility and reproductive system (RS) development.

(A) Images of wnt2o mutant TE and GD, showing disrupted morphology in these tissues. (B) Images of the TE and SV fusion site from the control and wnt2 overexpression animals. The epithelial cells of the TE and SV are labeled with hamRSGal4 driving UAS-mCD8GFP in lime-green and E-Cad in magenta and Ham in gray. The white arrows indicate mobilized GFP positive cells in the middle of the TE, and these cells have a lower level of E-Cad. The blue and white dashed lines highlight the TE and SV, respectively. (C) Images of the TE and SV fusion site from the control and fz2 RNAi animals. The white arrows indicate mobilized GFP positive cells in the middle of the TE, and these cells have a lower level of E-Cad. (D) Graphs of progeny number from male fertility tests for fz and fz2 RNAi lines in comparison to GFP RNAi. n = 3. Statistical significance was calculated using unpaired t-test (**, p< 0.01; *, p<0.05). (E) Illustration of cell–cell interactions in the developing RS, and a speculated model for Tl and Wnt2 signaling functions. Wnt2 signaling may be involved in epithelial cell interaction between the two ends. Tl signaling and Tl may be involved in the interaction between epithelial cells and myoblasts/myotubes. In three conditions (shgRNAi, wnt2OE, and fz2RNAi), some TE terminal epithelial cells (illustrated in orange) move up to the distal end of the testis.

Figure 7—source data 1

Number of progenies from male fertility tests for fz and fz2.RNAi lines in comparison to GFP.RNAi shown in Figure 7D.

https://cdn.elifesciences.org/articles/104164/elife-104164-fig7-data1-v1.xlsx
Figure 7—figure supplement 1
Male fertility test for Toll-9.

(A) Graphs of progeny number from male fertility test for hamRSGal4 driving Toll-9 RNAi in comparison to GFP RNAi. The number of tested males = 3. Statistical significance was calculated using unpaired t-test (***, p<0.001). (B) White-field image of Toll-9 RNAi adult male reproductive system (RS), showing morphological defects of the TE and the phenotype penetrance (11% of 37 animals). (C) Images of adult RS from control GFP RNAi andToll-9 RNAi males. hamRSGal4 >UAS-mCD8GFP is used to label the testis terminal epithelium and the SV, and DAPI stains DNA. The panels below are higher magnification views on the selected SV area, highlighted with white dashed squares. White arrows indicate sperms in the control SV, which are absent from the Toll-RNAi sample. The bar graph shows the percentage of SV with sperms in GFP and Toll-9 RNAi animals (N = 10).

Figure 7—figure supplement 1—source data 1

Number of progenies from male fertility test for hamRSGal4 driving Toll-9 RNAi in comparison to GFP RNAi shown in Figure 7—figure supplement 1A.

https://cdn.elifesciences.org/articles/104164/elife-104164-fig7-figsupp1-data1-v1.xlsx
PRDM16 and MECOM/PRDM3 expression in human tissues.

(A) RNA expression data across human tissues through Cap analysis of gene expression (Fantom5 dataset from the Human Protein Atlas). (B) Expression in single-cell RNA-seq clusters in the indicated human tissues (from the Human Protein Atlas).

Tables

Appendix 1—key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Genetic reagent (D. melanogaster)w1118Bloomington Drosophila Stock CenterBDSC:3605
FLYBase: FBst0003605;
RRID:BDSC_3605
FlyBase symbol: w1118
Genetic reagent (D. melanogaster)hamPR Δ FRT40A/CyoThis paperA new hamlet mutant fly line
Genetic reagent (D. melanogaster)hamSK1 FRT40A/CyoThis paperA new hamlet mutant fly line
Genetic reagent (D. melanogaster)ham1,FRT40A/CyoMoore et al., 2002 DOI: 10.1126/science.1072387
Genetic reagent (D. melanogaster)pBAC_ham_sfGFPBloomington Drosophila Stock CenterBDSC:83660
FLYBase: FBst0083660;
RRID:BDSC_83660
FlyBase symbol: y1 w*; PBac
{ham-GFP.FPTB}VK00033/TM6C, Sb1
Genetic reagent (D. melanogaster)hamRSGal4Bloomington Drosophila Stock CenterBDSC:48361
FLYBase: FBst0048361;
RRID:BDSC_48361
FlyBase symbol: w1118;P
{GMR80G06-GAL4}attP2
Genetic reagent (D. melanogaster)hamRNAiBloomington Drosophila Stock CenterBDSC:26728
FlyBase: FBst0026728;
RRID:BDSC_26728
FlyBase symbol: y1 v1;P{TRiP.JF02270}attP2
Genetic reagent (D. melanogaster)UAS-GFPBloomington Drosophila Stock CenterBDSC:4775
FlyBase: FBst0004775;
RRID:BDSC_4775
FlyBase symbol: w1118; P{UAS-GFP.nls}14
Genetic reagent (D. melanogaster)GFP.RNAiBloomington Drosophila Stock CenterBDSC:9330
FlyBase: FBst0009330;
RRID:BDSC_9330
FlyBase symbol: w1118;P{UAS-GFP.RNAi.R}142
Genetic reagent (D. melanogaster)Wnt2OBloomington Drosophila Stock CenterBDSC:6958
FlyBase: FBst0006958;
RRID:BDSC_6958
FlyBase symbol: Wnt2O/CyO, amosRoi-1
Genetic reagent (D. melanogaster)UASWnt2Bloomington Drosophila Stock CenterBDSC:6961
FlyBase: FBst0006961;
RRID:BDSC_6961
FlyBase symbol:
Genetic reagent (D. melanogaster)fz2.RNAiBloomington Drosophila Stock CenterBDSC:27568
FlyBase: FBst0027568;
RRID:BDSC_27568
FlyBase symbol: y1 v1;P{TRiP.JF02722}attP2
Genetic reagent (D. melanogaster)fz2.RNAiBloomington Drosophila Stock CenterBDSC: 67863
FlyBase: FBst0067863;
RRID:BDSC_67863
FlyBase symbol: y1 sc* v1 sev21; P{TRiP.HMS05675}attP40
Genetic reagent (D. melanogaster)fz.RNAiVienna Drosophila Resource CenterVDRC: 43075
FlyBase: FBst0464905;
FlyBase symbol: w1118;P{GD4614}v43075
Genetic reagent (D. melanogaster)Toll-9.RNAiBloomington Drosophila Stock CenterBDSC: 34853 FlyBase: FBst0034853; RRID:BDSC_34853FlyBase symbol: y1 sc* v1 sev21; P{TRiP.HMS00171}attP2
Genetic reagent (D. melanogaster)pbl.RNAiBloomington Drosophila Stock CenterBDSC: 28343
FlyBase: FBst0028343; RRID:BDSC_28343
FlyBase symbol: y1 v1;P{TRiP.JF02979}attP2
Genetic reagent (D. melanogaster)CG11406.RNAiBloomington Drosophila Stock CenterBDSC: 61185
FlyBase: FBst0061185; RRID:BDSC_61185
FlyBase symbol: y1 v1;P{TRiP.HMJ22905}attP40
Genetic reagent (D. melanogaster)AP-2alpha.RNAiBloomington Drosophila Stock CenterBDSC: 32866
FlyBase: FBst0032866; RRID:BDSC_32866
FlyBase symbol: y1 sc* v1 sev21; P{TRiP.HMS00653}attP2
Genetic reagent (D. melanogaster)shg.RNAiBloomington Drosophila Stock CenterBDSC: 32904
FlyBase: FBst0032904; RRID:BDSC_32904
FlyBase symbol: y1 sc* v1 sev21; P{TRiP.HMS00693}attP2
Genetic reagent (D. melanogaster)GstE11.RNAiBloomington Drosophila Stock CenterBDSC: 82975
FlyBase: FBst0082975; RRID:BDSC_82975
FlyBase symbol: y1 sc* v1 sev21; P{TRiP.HMC06653}attP40
Genetic reagent (D. melanogaster)CG7456.RNAiBloomington Drosophila Stock CenterBDSC: 51866
FlyBase: FBst0051866; RRID:BDSC_51866
FlyBase symbol: y1 v1;P{TRiP.HMC03440}attP40
Genetic reagent (D. melanogaster)CG7456.RNAiBloomington Drosophila Stock CenterBDSC: 53679
FlyBase: FBst0053679; RRID:BDSC_53679
FlyBase symbol: y1 v1;P{TRiP.HMJ21592}attP40
Genetic reagent (D. melanogaster)Gr64c.RNAiBloomington Drosophila Stock CenterBDSC: 36734
FlyBase: FBst0036734; RRID:BDSC_36734
FlyBase symbol: y1 sc* v1 sev21;P{TRiP.HMS01625}attP40
Genetic reagent (D. melanogaster)AkhR.RNAiBloomington Drosophila Stock CenterBDSC: 29577
FlyBase: FBst0029577;
RRID:BDSC_29577
FlyBase symbol: y1v1;P{TRiP.JF03256}attP2
Genetic reagent (D. melanogaster)AkhR.RNAiBloomington Drosophila Stock CenterBDSC: 51710
FlyBase: FBst0051710; RRID:BDSC_51710
FlyBase symbol: y1v1; P{TRiP.HMC03228}attP40
Genetic reagent (D. melanogaster)Idgf4.RNAiBloomington Drosophila Stock CenterBDSC: 55381
FlyBase: FBst0055381; RRID:BDSC_55381
FlyBase symbol: y1 sc* v1 sev21; P{TRiP.HMC04069}attP40
Genetic reagent (D. melanogaster)CG17477.RNAiBloomington Drosophila Stock CenterBDSC: 42821
FlyBase: FBst0042821; RRID:BDSC_42821
FlyBase symbol: y1 v1;P{TRiP.HMS02503}attP40
Genetic reagent (D. melanogaster)CG11069.RNAiBloomington Drosophila Stock CenterBDSC: 77158
FlyBase: FBst0077158; RRID:BDSC_77158
FlyBase symbol: y1 sc* v1 sev21; P{TRiP.HMS05930}attP40
Genetic reagent (D. melanogaster)CG17186.RNAiBloomington Drosophila Stock CenterBDSC: 27079
FlyBase: FBst0027079; RRID:BDSC_27079
FlyBase symbol: y1 v1;P{TRiP.JF02425}attP2
Genetic reagent (D. melanogaster)CG4872.RNAiBloomington Drosophila Stock CenterBDSC: 64486
FlyBase: FBst0064486; RRID:BDSC_64486
FlyBase symbol: y1 v1;P{TRiP.HMC05503}attP40
Genetic reagent (D. melanogaster)AdSL.RNAiBloomington Drosophila Stock CenterBDSC: 34347
FlyBase: FBst0034347; RRID:BDSC_34347
FlyBase symbol: y1 sc* v1 sev21; P{TRiP.HMS01336}attP2
Genetic reagent (D. melanogaster)Tl.RNAiBloomington Drosophila Stock CenterBDSC: 31044
FlyBase: FBst0031044; RRID:BDSC_31044
FlyBase symbol: y1 v1;P{TRiP.JF01491}attP2
Genetic reagent (D. melanogaster)CG17283.RNAiBloomington Drosophila Stock CenterBDSC: 63723
FlyBase: FBst0063723; RRID:BDSC_63723
FlyBase symbol: y1 v1;P{TRiP.HMJ30291}attP40/CyO
Genetic reagent (D. melanogaster)decay.RNAiBloomington Drosophila Stock CenterBDSC:65879
FlyBase: FBst0065879; RRID:BDSC_65879
FlyBase symbol: y1 sc* v1 sev21; P{TRiP.HMC06141}attP2
Genetic reagent (D. melanogaster)PH4alphaMP.RNAiBloomington Drosophila Stock CenterBDSC: 65190
FlyBase: FBst0065190; RRID:BDSC_65190
FlyBase symbol: y1 sc* v1 sev21; P{TRiP.HMC06065}attP40
Genetic reagent (D. melanogaster)Hr46.RNAiBloomington Drosophila Stock CenterBDSC: 27253
FlyBase: FBst0027253; RRID:BDSC_27253
FlyBase symbol: y1 v1;P{TRiP.JF02542}attP2
Genetic reagent (D. melanogaster)CG15117.RNAiBloomington Drosophila Stock CenterBDSC: 33693
FlyBase: FBst0033693; RRID:BDSC_33693
FlyBase symbol: y1 sc* v1 sev21; P{TRiP.HMS00562}attP2
Genetic reagent (D. melanogaster)gsb-n.RNAiBloomington Drosophila Stock CenterBDSC: 28078
FlyBase: FBst0028078; RRID:BDSC_28078
FlyBase symbol: y1 v1;P{TRiP.JF02915}attP2
Genetic reagent (D. melanogaster)shark.RNAiBloomington Drosophila Stock CenterBDSC: 25788
FlyBase:
FBst0025788; RRID:BDSC_25788
FlyBase symbol: y1 v1;P{TRiP.JF01794}attP2
Genetic reagent (D. melanogaster)CG17018.RNAiBloomington Drosophila Stock CenterBDSC: 57024
FlyBase: FBst0057024; RRID:BDSC_57024
FlyBase symbol: y1 sc* v1 sev21; P{TRiP.HMS04468}attP40
Genetic reagent (D. melanogaster)cag.RNAiBloomington Drosophila Stock CenterBDSC: 63554
FlyBase: FBst0063554; RRID:BDSC_63554
FlyBase symbol: y1 v1;P{TRiP.HMJ30120}attP40/CyO
Genetic reagent (D. melanogaster)CG7484.RNAiBloomington Drosophila Stock CenterBDSC: 61869
FlyBase: FBst0061869; RRID:BDSC_61869
FlyBase symbol: y1 v1;P{TRiP.HMJ23358}attP40
Genetic reagent (D. melanogaster)CG31935.RNAiBloomington Drosophila Stock CenterBDSC: 64495
FlyBase: FBst0064495; RRID:BDSC_64495
FlyBase symbol: y1 sc* v1 sev21; P{TRiP.HMC05513}attP40
AntibodyRabbit anti-HamGift from Eric Lai’s labIF (1:300), WB (1:2000)
Cut&Tag (1:150)
AntibodyRabbit anti-GFPInvitrogenCat# G10362Cut&Tag (1:150)
AntibodyIgG from rabbit serumSigma-AldrichCat# I5006-10MGCut&Tag (1:150)
Antibodyguineapig anti-rabbitAntibodies onlineCat# ABIN101961Secondary antibody for
Cut&Tag (1:100)
AntibodyMouse anti-V5InvitrogenCat# R960-25IF (1:500)
Antibodychicken anti-GFPAbcamCat# ab13970IF (1:2000)
AntibodyRat anti-vasaDevelopmental Studies Hybridoma Bank, DSHBCat# anti-vasa-cIF (1:50)
AntibodyMouse anti-ABD-BDSHBCat# 1A2E9-cIF (1:50)
AntibodyMouse anti-SXLDSHBCat# M18-cIF (1:50)
AntibodyRat anti-E-CadDSHBCat# DCAD2IF (1:50)
AntibodyMouse anti-CrbDSHBCat# Cq4IF (1:10)
AntibodyMouse anti-CorDSHBCat# C615.16IF (1:100)
antibodySecondary antibodies conjugated to Cy3 or Cy5 or Alexa Fluor-488Jackson ImmunoResearchIF (1:1000)
Antibodymouse anti-Rabbit IgG light chain specificJackson ImmunoResearchCat# 211-032-171WB (1:40,000)
Sequence-based reagenthamPRΔ_CRISPR gRNAThis papergRNA sequence for CRISPR/Cas9TCAGGACGATTGTATAGGCG
Sequence-based reagenthamPRΔ check_ForwardThis paperPCR primersAACACTTTTG AGGGTTGTGTCTTG
Sequence-based reagenthamPRΔ check_ReverseThis paperPCR primersACAGGACTCTTGGGTCGCCC
Sequence-based reagentDWnt2_Luc1_FThis paperPCR primersTTGGCGCGCCACTCCTCCCTCCATTTGGCCAC
Sequence-based reagentDWnt2_Luc1_RThis paperPCR primersTTGGCGCGCCACCTTCTTCTGCTCCAGCCAACG
Sequence-based reagentDWnt2_Luc2_FThis paperPCR primersTTGGCGCGCCGCTTGAAAAGGATCCGTGATC
Sequence-based reagentDWnt2_Luc2_RThis paperPCR primersTTGGCGCGCCCCATCATTGATGGAAGGTC
Sequence-based reagentDWnt2_Luc3_FThis paperPCR primersTTGGCGCGCCCTCGCAGTGTCGTACATATGTC
Sequence-based reagentDWnt2_Luc3_RThis paperPCR primersTTGGCGCGCCTGAGATCACATGCAATGACGC
Sequence-based reagentDWnt2_Luc4_FThis paperPCR primersTTGGCGCGCCGCGTCATTGCATGTGATCTC
Sequence-based reagentDWnt2_Luc4_RThis paperPCR primersTTGGCGCGCCGCGGCAATAATCATGCGATC
Sequence-based reagentshot_Luc1_FThis paperPCR primersTTGGCGCGCCAGTGCATGGATGCTAGGCGAAC
Sequence-based reagentshot_Luc1_RThis paperPCR primersTTGGCGCGCCAACCAGCTTGTGCCTGCTACG
Sequence-based reagentshot_Luc2_FThis paperPCR primersTTGGCGCGCCAGGTGTATAGAGCGGTGCATG
Sequence-based reagentshot_Luc2_RThis paperPCR primersTTGGCGCGCCCAGTGCGCTTTATATCGCTCG
Sequence-based reagentshg_Luc1_FThis paperPCR primersTTGGCGCGCCCAACTCGAACTCGACTCAGTGG
Sequence-based reagentshg_Luc1_RThis paperPCR primersTTGGCGCGCCGTGTCGCTGGAACTCTTCCTTG
Sequence-based reagentshg_Luc2_FThis paperPCR primersTTGGCGCGCCCTGCCACGAATGTTGACGATCC
Sequence-based reagentshg_Luc2_RThis paperPCR primersTTGGCGCGCCCGATCTGACGACGACAGATGTC
Sequence-based reagent ham_PL1This paperSCRINSHOT padlock probe/5Phos/ATCCTGTATATCAAGATGATTCCTCTATGATTACTGACTGCGTCTATTTAGTGGAGCCGCCCCTATCTTCTTTGGTGAAGTAGCTCCTG
Sequence-based reagent ham_PL2This paperSCRINSHOT padlock probe/5Phos/ATGGTAGTTTCTGATCAAAGTCCTCT
ATGATTACTGACTGCGTCTATTTAGTGGAGCCGCCCCTATCTTCTTTTCACCCTTTAGAAAGCCAA
Sequence-based reagent ham_PL3This paperSCRINSHOT padlock probe/5Phos/CGAAGTACTCCTCCCTTTCCTCTATGATTACTGACTGCGTCTATTTAGTGGAGCCGCCCCTATCTTCTTTCATGAACTTCCTTATGTCAT
Sequence-based reagentwnt2_PL1This paperSCRINSHOT padlock probe/5Phos/AGCTCATTAGTGACGCAATTTCCTCTATGATTACTGACTGCGTCTATTTAGTGGAGCCGCCCCTATCTTCTTTGCGGAGATTAACATAAATGC
Sequence-based reagentwnt2_PL2This paperSCRINSHOT padlock probe/5Phos/TATCGCCAACCAGTCGAATCCTCTATGATTACTGACTGCGTCTATTTAGTGGAGCCGCCCCTATCTTCTTTTTGATACTTCAGCATGAGTC
Sequence-based reagentwnt2_PL3This paperSCRINSHOT padlock probe/5Phos/GACATAGCCCTAGTTCTAGTCCTCTATGATTACTGACTGCGTCTATTTAGTGGAGCCGCCCCTATCTTCTTTCTTAATCAACGCATTTCCTAT
Sequence-based reagentshg_PL1This paperSCRINSHOT padlock probe/5Phos/ATCGAATCGAACTCGTACATCCTCTATGATTACTGACTGCGTCTATTTAGTGGAGCCGCCCCTATCTTCTTTCAACCGCTCAATAATTATCA
Sequence-based reagentshg_PL2This paperSCRINSHOT padlock probe/5Phos/CGATTATCGCATACGATTGGTCCTCTATGATTACTGACTGCGTCTATTTAGTGGAGCCGCCCCTATCTTCTTTACTACGTTATATGCCCGCA
Sequence-based reagentshg_PL3This paperSCRINSHOT padlock probe/5Phos/TTACGTTGATGAATCGGATGTCCTCTATGATTACTGACTGCGTCTATTTAGTGGAGCCGCCCCTATCTTCTTTCTGATAAACTCCTCCTTGG
Sequence-based reagentshot_PL1This paperSCRINSHOT padlock probe/5Phos/TCGCGGTAATCCTTGCATCCTCTATGATTACTGACTGCGTCTATTTAGTGGAGCCGCCCCTATCTTCTTTTATCAATAGTTGGTGCATAG
Sequence-based reagentshot_PL2This paperSCRINSHOT padlock probe/5Phos/TCCTTTAGGGTCTTCATTACTCCTCTATGATTACTGACTGCGTCTATTTAGTGGAGCCGCCCCTATCTTCTTTCAAGATAGTGTTTCCTCTAGA
Sequence-based reagentshot_PL3This paperSCRINSHOT padlock probe/5Phos/TATGCCATCGATGAAGACATTCCTCTATGATTACTGACTGCGTCTATTTAGTGGAGCCGCCCCTATCTTCTTTATGTATCGAATTTCGTATTGAG
Sequence-based reagentpbl_PL1This paperSCRINSHOT padlock probe/5Phos/TCGTAAACGTATAGAGCTTCTCATGATTACTGACTGCGTCTATTTAGAATATAAATGAGGTTGATGATGAGGACTTATCTGTCTCCTCATCACTGA
Sequence-based reagentpbl_PL2This paperSCRINSHOT padlock probe/5Phos/ACCGGATCGTATTCAAAGATATATGATTACTGACTGCGTCTATTTAGAATATAAATGAGGTTGATGATGAGGACTCTATCCGAGATGTCAATCACTA
Sequence-based reagentpbl_PL3This paperSCRINSHOT padlock probe/5Phos/CGAATAAACTATTTGAGACAGACAATGATTACTGACTGCGTCTATTTAGAATATAAATGAGGTTGATGATGAGGACTCGGACTGGTGGTACAAT
Sequence-based reagentAP-2alpha_PL1This paperSCRINSHOT padlock probe/5Phos/GCACTTGAGTTGTTGTTACTATCTATGATTACTGACTGCGTCTATTTACTCCTACACTCTTCTTAAGTACCTTTCCTTCTTCGTGTTGTACACG
Sequence-based reagentAP-2alpha_PL2This paperSCRINSHOT padlock probe/5Phos/TATGAATAACAGCTTACAGACATCTATGATTACTGACTGCGTCTATTTACTCCTACACTCTTCTTAAGTACCTTTCCATGGCCGAGGAGAAA
Sequence-based reagentAP-2alpha_PL3This paperSCRINSHOT padlock probe/5Phos/GCGACTGCAAATCATTCTTTACTAT
GATTACTGACTGCGTCTATTTACTCCTACA
CTCTTCTTAAGTACCTTTCGATTAACGTG
CACAGGATTAC
Sequence-based reagentCG11406_PL1This paperSCRINSHOT padlock probe/5Phos/AATTTGCCGCTATTGATGAGTGAT
CCTCTATGATTACTGACTGCGTCTATTTAG
ATAGTGGTCCACTGTCCTGGGTAGTCGTACTGCTGG
Sequence-based reagentCG11406_PL2This paperSCRINSHOT padlock probe/5Phos/CCCGGCACCTGATACTGATCCTC
TATGATTACTGACTGCGTCTATTTAGATAGTG
GTCCACTGTCCTGGAACAGAAAGTCAATGTGATTATAG
Sequence-based reagentCG11406_PL3This paperSCRINSHOT padlock probe/5Phos/CTTATTCCTGTTTCCTCGTTCTGAT
CCTCTATGATTACTGACTGCGTCTATTTAGA
TAGTGGTCCACTGTCCTGGTCCACGTTTGGTGGAA
Sequence-based reagentAkhR_PL1This paperSCRINSHOT padlock probe/5Phos/CAAGGATTTGCCTCAAAGATAATCCTCT
ATGATTACTGACTGCGTCTATTTACTGAGGAGA
ATGATCATCGTGATGTATCTGAATGCAACTGCAT
Sequence-based reagentAkhR_PL2This paperSCRINSHOT padlock probe/5Phos/TCGCTTAATTGATCCAGTTGTCCTCTATG
ATTACTGACTGCGTCTATTTACTGAGGAGAATGAT
CATCGTGATTCCAGTTGAACATTAGCAGA
Sequence-based reagentAkhR_PL3This paperSCRINSHOT padlock probe/5Phos/AGATGCATTAGCATGATATCAATACTCCT
CTATGATTACTGACTGCGTCTATTTACTGAGGAG
AATGATCATCGTGATGATCGGCGATGGCC
Sequence-based reagentCG17186_PL1This paperSCRINSHOT padlock probe/5Phos/CAACATCTGGCTCTTCCTCTATGATTACT
GACTGCGTCTATTTAGATAGAGGCTCTAGATTT
CATCTACGTATCTATATCCTGTATATCCTCCA
Sequence-based reagentCG17186_PL2This paperSCRINSHOT padlock probe/5Phos/GATCTATTTGAACCACCTCGTCTATGAT
TACTGACTGCGTCTATTTAGATAGAGGCTCTAG
ATTTCATCTACGTATATTCTATCATTTCAAAGCCGG
Sequence-based reagentCG17186_PL3This paperSCRINSHOT padlock probe/5Phos/CAAGAGCTTCAGTTTCCTCTCTATGAT
TACTGACTGCGTCTATTTAGATAGAGGCTCTAG
ATTTCATCTACGTTCCAAGTATTCTACTGGCT
Sequence-based reagentCG4872_PL1This paperSCRINSHOT padlock probe/5Phos/CTGCTCATATTGGCAATGAAATCTCTAT
GATTACTGACTGCGTCTATTTAGAAACTATCCC
AAGGAGCTAGAAATGTAGTAAGCTGGCGTAGAG
Sequence-based reagentCG4872_PL2This paperSCRINSHOT padlock probe/5Phos/CGTGCGATTGTAAAGATTAAGCTCTATG
ATTACTGACTGCGTCTATTTAGAAACTATCCCAA
GGAGCTAGAAATCAGTGCCTTTGCCTG
Sequence-based reagentCG4872_PL3This paperSCRINSHOT padlock probe/5Phos/CTCTCGGTGTTCAATTTCTGCTCTATGA
TTACTGACTGCGTCTATTTAGAAACTATCCCAAG
GAGCTAGAAATATACAGTAATCTGGGTTCCG
Sequence-based reagentdecay_PL1This paperSCRINSHOT padlock probe/5Phos/AAGAATTTGTCGAATGTGGAGATCCTCT
ATGATTACTGACTGCGTCTATTTACTCAACCAGA
TGAAGGAAATGCGTCAACGTTACGGAATGAG
Sequence-based reagentdecay_PL2This paperSCRINSHOT padlock probe/5Phos/GTTTGTTCTTGAGCGTCTTATCCTCTATG
ATTACTGACTGCGTCTATTTACTCAACCAGATGAA
GGAAATGCCTGGATGAAGAAGAGTTTGG
Sequence-based reagentdecay_PL3This paperSCRINSHOT padlock probe/5Phos/TCGTTGATCTCGGAGAAGATCCTCTATG
ATTACTGACTGCGTCTATTTACTCAACCAGATGA
AGGAAATGCCAACCTCTTTGAGCGTG
Sequence-based reagentPH4alphaMP_PL1This paperSCRINSHOT padlock probe/5Phos/CCTCCATAAAGTCTAGGGATATCCTCTAT
GATTACTGACTGCGTCTATTTACAATGTATGGATT
CGTGAACGCCGATGATATTCCACCACTG
Sequence-based reagentPH4alphaMP_PL2This paperSCRINSHOT padlock probe/5Phos/AAGTCGCGTAAGAGCTATCATCCTCTATG
ATTACTGACTGCGTCTATTTACAATGTATGGATTC
GTGAACGCCATCCAATTGATAAGTCTGCTG
Sequence-based reagentPH4alphaMP_PL3This paperSCRINSHOT padlock probe/5Phos/CTAAGATTTCTTTGCTTGGATGATCCTCTATGATTACTGACTGCGTCTATTTACAATGTATGGATTCGTGAACGCCTCTTCCTTAAGCGACAC
Sequence-based reagentGstE11_PL1This paperSCRINSHOT padlock probe/5Phos/AGACAGTGCTCCAAGCCTCTATGATCCTCTATGATTACTGACTGCGTCTATTTACTGGTGGATGCCCGTCAAGTAATCACCTTCAGCC
Sequence-based reagentGstE11_PL2This paperSCRINSHOT padlock probe/5Phos/CGACAATGAAACGGATTCGCTCTATGATCCTCTATGATTACTGACTGCGTCTATTTACTGGTGGATGCCCGTCGAAATAGATCACCGGCT
Sequence-based reagentGstE11_PL3This paperSCRINSHOT padlock probe/5Phos/ATATCCAGACCTTCCTGATTGCTCTATGATCCTCTATGATTACTGACTGCGTCTATTTACTGGTGGATGCCCGTTTAACCAGTCCCACCAAC
Sequence-based reagentCog4_PL1This paperSCRINSHOT padlock probe/5Phos/GGATTCCAGTACTCCGATAGCCTCTATGATTACTGACTGCGTCTATTTACAATCAGTTCCTGAACTACAGTCAGATGACATCTCTTTGTTATTCTCC
Sequence-based reagentCog4_PL2This paperSCRINSHOT padlock probe/5Phos/TGCACTATGAAGAACTGGACCTCTATGATTACTGACTGCGTCTATTTACAATCAGTTCCTGAACTACAGTCAGAGTTAAGTAGTCCATCCAAT
Sequence-based reagentCog4_PL3This paperSCRINSHOT padlock probe/5Phos/CTTCTCATAGCGTTCCATTATATCCCTCTATGATTACTGACTGCGTCTATTTACAATCAGTTCCTGAACTACAGTCACAGATCGGAGTTCTTCATGAT
Sequence-based reagentGr64c_PL1This paperSCRINSHOT padlock probe/5Phos/AAACTAAGAGATCCTATGGTATAGTGATCCTCTATGATTACTGACTGCGTCTATTTAGGCAAGGGATACTTTCTGCTGATGCAGATCACGCTG
Sequence-based reagentGr64c_PL2This paperSCRINSHOT padlock probe/5Phos/GTTCTTGAATTGGAGATACGAGTGATCCTCTATGATTACTGACTGCGTCTATTTAGGCAAGGGATACTTTCTGCTCGTGACACTTATGACTAAATGC
Sequence-based reagentGr64c_PL3This paperSCRINSHOT padlock probe/5Phos/GAAAGCTATGATAAATCTGCACTGATCCTCTATGATTACTGACTGCGTCTATTTAGGCAAGGGATACTTTCTGCTCATAGTTGCCCTTGGATT
Sequence-based reagentIdgf4_PL1This paperSCRINSHOT padlock probe/5Phos/CGTAGTCCAAGTTATTGATAATAGATGATCCTCTATGATTACTGACTGCGTCTATTTAGACTCAACGCAAACCTGTGGTAGGTGTGCAGGTTCA
Sequence-based reagentIdgf4_PL2This paperSCRINSHOT padlock probe/5Phos/AACAAAGTAGATGATGAGATCCATGATCCTCTATGATTACTGACTGCGTCTATTTAGACTCAACGCAAACCTGTGAACTGTTGCCGTCATAGT
Sequence-based reagentIdgf4_PL3This paperSCRINSHOT padlock probe/5Phos/GCTCTACAACTTGCTCTTAACATGATCCTCTATGATTACTGACTGCGTCTATTTAGACTCAACGCAAACCTGTGAAAGAATCAGAAGGATGAGGA
Sequence-based reagentCG17477_PL1This paperSCRINSHOT padlock probe/5Phos/CCTGAGTTAGTGCGTTAAAGATCCTCTATGATTACTGACTGCGTCTATTTAGATAATTACGGCTGGTCACTGTATGTGGGTAGTTCAACCG
Sequence-based reagentCG17477_PL2This paperSCRINSHOT padlock probe/5Phos/GGCAGACATCATGGACTATCCTCTATGATTACTGACTGCGTCTATTTAGATAATTACGGCTGGTCACTGTCAGTTCCAGATCCTCGTA
Sequence-based reagentCG17477_PL3This paperSCRINSHOT padlock probe/5Phos/TAAGCACAAATATGGCAAGGATCCTCTATGATTACTGACTGCGTCTATTTAGATAATTACGGCTGGTCACTGTTCCAATATTTGCCTGACGA
Sequence-based reagentCG11069_PL1This paperSCRINSHOT padlock probe/5Phos/AAATCGGAAATAAAGATATGGTAGCCTCTATGATTACTGACTGCGTCTATTTACAACTCTACTGATTGCCTACAACTGAGAACTTCTTGCGCC
Sequence-based reagentCG11069_PL2This paperSCRINSHOT padlock probe/5Phos/CTCTTATGCGCCACTTGCCTCTATGATTACTGACTGCGTCTATTTACAACTCTACTGATTGCCTACAACTCACTGATATTAAGATACTCCACT
Sequence-based reagentCG11069_PL3This paperSCRINSHOT padlock probe/5Phos/TGACCAACTGTATTCCAATAGCCTCTATGATTACTGACTGCGTCTATTTACAACTCTACTGATTGCCTACAACTCAATAGCATGACAGGATCTC
Sequence-based reagentAdSL_PL1This paperSCRINSHOT padlock probe/5Phos/CGTCTTGAACGTTCTTCAGTGATCCTCTATGATTACTGACTGCGTCTATTTACTCGAGTCGACGTTCTTGATCTAGATCTAGATGTTCAGTTTGA
Sequence-based reagentAdSL_PL2This paperSCRINSHOT padlock probe/5Phos/AGCCAGTAGCAACTGTTTTGATCCTCTATGATTACTGACTGCGTCTATTTACTCGAGTCGACGTTCTTGATCATAAGATATTCGGCTGCTTAA
Sequence-based reagentAdSL_PL3This paperSCRINSHOT padlock probe/5Phos/CGAGACATTGCTGGTTAGTGATCCTCTATGATTACTGACTGCGTCTATTTACTCGAGTCGACGTTCTTGATGTGATAATCCATTTAGCAACAG
Sequence-based reagentTl_PL1This paperSCRINSHOT padlock probe/5Phos/GATCTGCACGTAGTCTTTGCTCTATGATTACTGACTGCGTCTATTTACTACAACAATAATCTGGTGCATGTGTATCCGTCAGATTGCACAT
Sequence-based reagentTl_PL2This paperSCRINSHOT padlock probe/5Phos/TTAGTTCGAGATGACTCAGATTCCTCTATGATTACTGACTGCGTCTATTTACTACAACAATAATCTGGTGCATGTGCATTTCCTCGATATTTGCCC
Sequence-based reagentTl_PL3This paperSCRINSHOT padlock probe/5Phos/TCCGAGTATATGATCACAATAATGCTCTATGATTACTGACTGCGTCTATTTACTACAACAATAATCTGGTGCATGTGCTTCTCCACATCTCCGATG
Sequence-based reagentCG17283_PL1This paperSCRINSHOT padlock probe/5Phos/TTGGTCCTCACCTTTAATTTCATCCTCTATGATTACTGACTGCGTCTATTTACAAGACCGAGTCAATCGTTAGAGACTGTCCTGCCTCTG
Sequence-based reagentCG17283_PL2This paperSCRINSHOT padlock probe/5Phos/ATACGTAGTGGCAGCGATCCTCTATGATTACTGACTGCGTCTATTTACAAGACCGAGTCAATCGTTAGAGTTAATACAGATAAGTCTAAGTGGA
Sequence-based reagentCG17283_PL3This paperSCRINSHOT padlock probe/5Phos/GGTCACGAAAGTGGTTCATCCTCTATGATTACTGACTGCGTCTATTTACAAGACCGAGTCAATCGTTAGACCTAGTATACCATCGAAATTTGA
Sequence-based reagentHr46_PL1This paperSCRINSHOT padlock probe/5Phos/GGTATATTGTTCAGCAGTGTATGATTACTGACTGCGTCTATTTAGAACATAATCGAATTTGCTAAGCTCATACGGAAATATCGCGGAAATTG
Sequence-based reagentHr46_PL2This paperSCRINSHOT padlock probe/5Phos/TCACTTTAACTGCTACTCAGATGATTACTGACTGCGTCTATTTAGAACATAATCGAATTTGCTAAGCTCATACGTATTCATTCGATTTCTCGC
Sequence-based reagentHr46_PL3This paperSCRINSHOT padlock probe/5Phos/GGCAAAGACAACCTAGGATGATTACTGACTGCGTCTATTTAGAACATAATCGAATTTGCTAAGCTCATACCACATACTTTAGTTACAACGTAA
Sequence-based reagentCG15117_PL1This paperSCRINSHOT padlock probe/5Phos/GTGGTTATGTCATTATAGGATGCTATGATTACTGACTGCGTCTATTTACAAACCCATTATCATGTCTGAATATGGTGATCCCTCAAATTGTCC
Sequence-based reagentCG15117_PL2This paperSCRINSHOT padlock probe/5Phos/GATGTAGGTGAAGAGATCTTCCTATGATTACTGACTGCGTCTATTTACAAACCCATTATCATGTCTGAATATGGCATTAGGATATCAGATCGGC
Sequence-based reagent CG15117_PL3This paperSCRINSHOT padlock probe/5Phos/AGCTATGGAGAAGTGCAGCTATGATTACTGACTGCGTCTATTTACAAACCCATTATCATGTCTGAATATGGCTTTGTTGACCAGGATCAG
Sequence-based reagentgsb-n_PL1This paperSCRINSHOT padlock probe/5Phos/CCTCCAAGAATTCCATTTATGATGATTACTGACTGCGTCTATTTACAAATATAATTGTGCAATGGTATCGACTCCACTTATATCTGAGTCTCGC
Sequence-based reagentgsb-n_PL2This paperSCRINSHOT padlock probe/5Phos/TCGAGAATCTAAGCGACGATGATTACTGACTGCGTCTATTTACAAATATAATTGTGCAATGGTATCGACTCGAATGCAAAGAGCTTATAGCAA
Sequence-based reagentgsb-n_PL3This paperSCRINSHOT padlock probe/5Phos/CGTTGCCAGCCTTAATGATGATTACTGACTGCGTCTATTTACAAATATAATTGTGCAATGGTATCGACTCATGTTCATAATGCATGTATGGAAA
Sequence-based reagentshark_PL1This paperSCRINSHOT padlock probe/5Phos/TTCTCTGGTCAGAGTGCTCCTCTATGATTACTGACTGCGTCTATTTATTTCGTATTTCGCAAGCTGATCTTTTAGTATGGCTACTGCCTC
Sequence-based reagentshark_PL2This paperSCRINSHOT padlock probe/5Phos/AATTCTTCTACTGCCGTTTGTCCTCTATGATTACTGACTGCGTCTATTTATTTCGTATTTCGCAAGCTGATCTAGCTTGTAGTTGAGCAGG
Sequence-based reagentshark_PL3This paperSCRINSHOT padlock probe/5Phos/AACCGTTTGCACCAATTCTCCTCTATGATTACTGACTGCGTCTATTTATTTCGTATTTCGCAAGCTGATCTAATGGAAACTGGCTTAAATGTG
Sequence-based reagentMarf1_PL1This paperSCRINSHOT padlock probe/5Phos/GATTCGTCCAGCGAGTAGCTATGATTACTGACTGCGTCTATTTAATATATGTAATGGAACATTCCGATCCCAAGTAGAAAGCTGCGTATATGT
Sequence-based reagentMarf1_PL2This paperSCRINSHOT padlock probe/5Phos/TGAATAGGTCTTTATGTGCTGCTATGATTACTGACTGCGTCTATTTAATATATGTAATGGAACATTCCGATCCCGTTGGTCCGTTGTTAATAC
Sequence-based reagentMarf1_PL3This paperSCRINSHOT padlock probe/5Phos/TTGGAGTCCTTCCATTAAGGCTATGATTACTGACTGCGTCTATTTAATATATGTAATGGAACATTCCGATCCCGAATACTACAGTAAGGAACACTATG
Sequence-based reagentcag_PL1This paperSCRINSHOT padlock probe/5Phos/CCCTCTTTAATCGACTGTTTGCCTCTATGATTACTGACTGCGTCTATTTAAGTCTTCATCGCTCACTAGTAATGTTAAGTTCTCCACTCAACAGA
Sequence-based reagentcag_PL2This paperSCRINSHOT padlock probe/5Phos/ACGGGAGAACCAATCAAAGCCTCTATGATTACTGACTGCGTCTATTTAAGTCTTCATCGCTCACTAGTAATGGGTATATTCTCGGTACGGAC
Sequence-based reagentcag_PL3This paperSCRINSHOT padlock probe/5Phos/GCTTGGGTCAGGGAAGCCTCTATGATTACTGACTGCGTCTATTTAAGTCTTCATCGCTCACTAGTAATGGTATTTATATTGCACCTAAATTGCAT
Sequence-based reagentCG7484_PL1This paperSCRINSHOT padlock probe/5Phos/TCTGTGTTCCACTTGGTTATCTCTATGAT
TACTGACTGCGTCTATTTAGATCAAATACGTAAGAGGACTGGATGAAGAACTCCTCGACAGTG
Sequence-based reagentCG7484_PL2This paperSCRINSHOT padlock probe/5Phos/ACTGAGGCTTGATGGTATCCTCTATGATTACTGACTGCGTCTATTTAGATCAAATACGTAAGAGGACTGGATAAAGTGCAGCATTGCTTAC
Sequence-based reagentCG7484_PL3This paperSCRINSHOT padlock probe/5Phos/GCGGATAGGCCCGCTCTATGATTACTGACTGCGTCTATTTAGATCAAATACGTAAGAGGACTGGATCTTTGAATAAAGGCCTGAATCT
Sequence-based reagentRab3GAP1_PL1This paperSCRINSHOT padlock probe/5Phos/GAATGCAGTAGTGGAATTACTCCTCTATGATTACTGACTGCGTCTATTTAGACCGACTGATAAGCAAGGATTACAGCTAGTTTGAGTATTGCT
Sequence-based reagentRab3GAP1_PL2This paperSCRINSHOT padlock probe/5Phos/CGTAGATCTGGACGAAGATTCCTCTATGATTACTGACTGCGTCTATTTAGACCGACTGATAAGCAAGGATTAGTATAGTAGTTCCATTTGGGAT
Sequence-based reagentRab3GAP1_PL3This paperSCRINSHOT padlock probe/5Phos/GTGCAACAGTTGTCATTGTCCTCTATGATTACTGACTGCGTCTATTTAGACCGACTGATAAGCAAGGATTATCAGTCGTCGATTTACAATC
Sequence-based reagentfz2_PL1This paperSCRINSHOT padlock probe/5Phos/AGGAAAGTGTTTGTGGAAGTATGATCCTCTATGATTACTGACTGCGTCTATTTAGCGTTTGTTCTACCTGCCGTTTCTCAGTCTATTTCGTTG
Sequence-based reagentfz2_PL2This paperSCRINSHOT padlock probe/5Phos/TACAGGTAACATCCGATAACTATGTATGATCCTCTATGATTACTGACTGCGTCTATTTAGCGTTTGTTCTACCTGCCTCAAAGTAGGCTGCTTCG
Sequence-based reagentfz2_PL3This paperSCRINSHOT padlock probe/5Phos/TCAGTCGATTGTGTCTCATTTTATGATCCTCTATGATTACTGACTGCGTCTATTTAGCGTTTGTTCTACCTGCCCCCAGGATCAGGACCT
Sequence-based reagentfz_PL1This paperSCRINSHOT padlock probe/5Phos/ACTAAGAACTACGACTGCGCTATGATTACTGACTGCGTCTATTTACTTGTTCTACGAGTACTACAACTTTGATAGATGATGAACTTTATACAAAGCC
Sequence-based reagentfz_PL2This paperSCRINSHOT padlock probe/5Phos/AGATCGATATGGTGATGGGCTATGATTACTGACTGCGTCTATTTACTTGTTCTACGAGTACTACAACTTTGAGTCATGTTATATGGTATATTCTTGC
Sequence-based reagentfz_PL3This paperSCRINSHOT padlock probe/5Phos/GCTAAACTCTAAGTAACTTTCGTTACTATGATTACTGACTGCGTCTATTTACTTGTTCTACGAGTACTACAACTTTGAGCATAGGGAACGTCTATGT
Sequence-based reagentfz4_PL1This paperSCRINSHOT padlock probe/5Phos/TCATCGAGCCAAAGATCCCTATGATTACTGACTGCGTCTATTTACAATCCTCTACTATAACTTAATGCGGTCAAATAGCCGGAGATCAGAT
Sequence-based reagentfz4_PL2This paperSCRINSHOT padlock probe/5Phos/CGAAGAATACGAATTCGATACGCTATGATTACTGACTGCGTCTATTTACAATCCTCTACTATAACTTAATGCGGTCTGATTTGTTGTTCTTTCGTTC
Sequence-based reagentfz4_PL3This paperSCRINSHOT padlock probe/5Phos/GTCTAGAGTAGCGTCTCATTGCTATGATTACTGACTGCGTCTATTTACAATCCTCTACTATAACTTAATGCGGTGAAATGGTACCTAATCCAATTCC
Sequence-based reagentfz3_PL1This paperSCRINSHOT padlock probe/5Phos/GGTTATGTAGGAGGCCAGGATCCTCTATGATTACTGACTGCGTCTATTTACTCCAACTCTTTCGTATGCCACACAGGCTTAAATAGGAGGT
Sequence-based reagentfz3_PL2This paperSCRINSHOT padlock probe/5Phos/GTGGTTTACGTATTTCTCCGGATCCTCTATGATTACTGACTGCGTCTATTTACTCCAACTCTTTCGTATGCCATTTATATTACTGTGCGACTCTCA
Sequence-based reagentfz3_PL3This paperSCRINSHOT padlock probe/5Phos/GTCTTCTTCTGAGAGCTCGGATCCTCTATGATTACTGACTGCGTCTATTTACTCCAACTCTTTCGTATGCCACTAGAATGAGGGTCTCAGAC
Sequence-based reagentspz_PL1This paperSCRINSHOT padlock probe/5Phos/TGTTACTGTTGCCTCTTATTTTCTATGATTACTGACTGCGTCTATTTACGGTTATAAACGATATCAATATCGCGCCTTTATACTGGTAGCTGG
Sequence-based reagentspz_PL2This paperSCRINSHOT padlock probe/5Phos/CCACCGATCTTAAGTGTTTATAGTCTATGATTACTGACTGCGTCTATTTACGGTTATAAACGATATCAATATCGCGAAGCCCGATACCATCTG
Sequence-based reagentspz_PL3This paperSCRINSHOT padlock probe/5Phos/TCATTCCTCAAAGGACGAGTCTATGATTACTGACTGCGTCTATTTACGGTTATAAACGATATCAATATCGCGAGGGATTGTGCTCTTTAGTG
Sequence-based reagentspz4_PL1This paperSCRINSHOT padlock probe/5Phos/TCGTACTATTGGTATTTCCAGGTCTATGATTACTGACTGCGTCTATTTACAGACGATTTGCGATTGTATTGAAATCGCAGTTCCTTTAGTAGTACTTA
Sequence-based reagentspz4_PL2This paperSCRINSHOT padlock probe/5Phos/CAGGAGGGAATCTAATGGGTCTATGATTACTGACTGCGTCTATTTACAGACGATTTGCGATTGTATTGAAATCCTAATACTACTGTACAATTGTTCA
Sequence-based reagentspz4_PL3This paperSCRINSHOT padlock probe/5Phos/ATCGTTATTAGTCTAGTGATCGTCTATGATTACTGACTGCGTCTATTTACAGACGATTTGCGATTGTATTGAAATCAAATACCCGATAACCTCG
Sequence-based reagentspz6_PL1This paperSCRINSHOT padlock probe/5Phos/TCCTCTAAAGGCTAGAACTTAGATGATCCTCTATGATTACTGACTGCGTCTATTTAGACGATACCCTACCCAAGGCTTTCACCTCAAAGTTGTGT
Sequence-based reagentspz6_PL2This paperSCRINSHOT padlock probe/5Phos/GCTCGTTTGCTTCTTGTAGATGATCCTCTATGATTACTGACTGCGTCTATTTAGACGATACCCTACCCAAGGCACTAGACGATAATCCATCTCC
Sequence-based reagentspz6_PL3This paperSCRINSHOT padlock probe/5Phos/TTGTTTAGATCTCCGCAAATGATGATCCTCTATGATTACTGACTGCGTCTATTTAGACGATACCCTACCCAAGGGATTCTTGGGTATCTGACCC
Sequence-based reagentspz5_PL1This paperSCRINSHOT padlock probe/5Phos/AGGGTAAGACTAATGCTACTATGCCTCTATGATTACTGACTGCGTCTATTTACCCACACATGAAACACTCAATATCGATATCCATTAGATCGCTCAC
Sequence-based reagentspz5_PL2This paperSCRINSHOT padlock probe/5Phos/CGGCTTGTAGATTTGTTTGCCTCTATGATTACTGACTGCGTCTATTTACCCACACATGAAACACTCAATATCAATTCGGAAACCTAGTGTG
Sequence-based reagentspz5_PL3This paperSCRINSHOT padlock probe/5Phos/AGCGAGACATCGCGCCTCTATGATTACTGACTGCGTCTATTTACCCACACATGAAACACTCAATATCGATATCCAAGAGATCCATGTTG
Sequence-based reagentham_det1_FAMThis paperSCRINSHOT detection probeGTAGCTCCUGATCCTGTAUATCAAGAT/36-FAM/
Sequence-based reagentham_det2_FAMThis paperSCRINSHOT detection probeCCTTUAGAAAGCCAAAUGGTAGTTTC/36-FAM/
Sequence-based reagentham_det3_FAMThis paperSCRINSHOT detection probeCTTCCTTAUGTCATCGAAGUACTCC/36-FAM/
Sequence-based reagentwnt2_det1_Cy3This paperSCRINSHOT detection probeGATTAACAUAAATGCAGCUCATTAGTGAC/3Cy3Sp/
Sequence-based reagentwnt2_det2_Cy3This paperSCRINSHOT detection probeCTTCAGCAUGAGTCTAUCGCC/3Cy3Sp/
Sequence-based reagentwnt2_det3_Cy3This paperSCRINSHOT detection probeAACGCATTUCCTATGACAUAGCC/3Cy3Sp/
Sequence-based reagentshg_det1_Cy5This paperSCRINSHOT detection probeCCGCTCAAUAATTATCAAUCGAATCGAA/3Cy5Sp/
Sequence-based reagentshg_det2_Cy5This paperSCRINSHOT detection probeCGCACGAUTATCGCAUACGAT/3Cy5Sp/
Sequence-based reagentshg_det3_Cy5This paperSCRINSHOT detection probeACTCCTCCUTGGTTACGUTGAT/3Cy5Sp/
Sequence-based reagentshot_det1_Cy3This paperSCRINSHOT detection probeTAGTTGGUGCATAGUCGCG/3Cy3Sp/
Sequence-based reagentshot_det2_Cy3This paperSCRINSHOT detection probeGTTTCCTCUAGATCCTTUAGGGTCTT/3Cy3Sp/
Sequence-based reagentshot_det3_Cy3This paperSCRINSHOT detection probeGAATTTCGUATTGAGTAUGCCATCGA/3Cy3Sp/
Sequence-based reagentpbl_detThis paperSCRINSHOT detection probeGAATAUAAATGAGGUTGATGAUGAGGACT /FITC/
Sequence-based reagentAP-2alpha_detThis paperSCRINSHOT detection probeCTCCUACACTCUTCTTAAGUACCTTTC /CY3/
Sequence-based reagentCG11406_detThis paperSCRINSHOT detection probeGATAGUGGTCCACTGUCCTG /CY5/
Sequence-based reagentAkhR_detThis paperSCRINSHOT detection probeCUGAGGAGAAUGATCATCGUGAT /FITC/
Sequence-based reagentCG17186_detThis paperSCRINSHOT detection probeGAUAGAGGCTCUAGATTTCAUCTACG /CY3/
Sequence-based reagentCG4872_detThis paperSCRINSHOT detection probeGAAACTAUCCCAAGGAGCUAGAAAT /CY5/
Sequence-based reagentdecay_detThis paperSCRINSHOT detection probeCUCAACCAGAUGAAGGAAAUGC /FITC/
Sequence-based reagentPH4alphaMP_detThis paperSCRINSHOT detection probeCAATGTAUGGATTCGUGAACGC /CY3/
Sequence-based reagentGstE11_detThis paperSCRINSHOT detection probeCTGGTGGAUGCCCGT /CY5/
Sequence-based reagentCog4_detThis paperSCRINSHOT detection probeCAATCAGUTCCTGAACUACAGTCA /FITC/
Sequence-based reagentGr64c_detThis paperSCRINSHOT detection probeGGCAAGGGAUACTTTCUGCT /CY3/
Sequence-based reagentIdgf4_detThis paperSCRINSHOT detection probeGACUCAACGCAAACCUGTG /CY5/
Sequence-based reagentCG17477_detThis paperSCRINSHOT detection probeGATAAUTACGGCUGGTCACUGT /CY3/
Sequence-based reagentCG11069_detThis paperSCRINSHOT detection probeCAACTCTACUGATTGCCUACAACT /FITC/
Sequence-based reagentAdSL_detThis paperSCRINSHOT detection probeCTCGAGUCGACGTTCTUGAT /FITC/
Sequence-based reagentTl_detThis paperSCRINSHOT detection probeCTACAACAAUAATCTGGUGCATGTG /CY3/
Sequence-based reagentCG17283_detThis paperSCRINSHOT detection probeCAAGACCGAGUCAATCGTUAGA /FITC/
Sequence-based reagent Hr46_detThis paperSCRINSHOT detection probeGAACATAAUCGAATTTGCUAAGCTCAUAC /CY3/
Sequence-based reagentCG15117_detThis paperSCRINSHOT detection probeCAAACCCAUTATCATGTCUGAATAUGG /CY5/
Sequence-based reagentgsb-n_detThis paperSCRINSHOT detection probeCAAATATAAUTGTGCAAUGGTATCGACUC /FITC/
Sequence-based reagentshark_detThis paperSCRINSHOT detection probeTTTCGTATUTCGCAAGCUGATCT /CY3/
Sequence-based reagentMarf1_detThis paperSCRINSHOT detection probeATATATGUAATGGAACAUTCCGAUCCC /CY5/
Sequence-based reagentcag_detThis paperSCRINSHOT detection probeAGTCTTCAUCGCTCACUAGTAATG /CY3/
Sequence-based reagentCG7484_detThis paperSCRINSHOT detection probeGATCAAAUACGUAAGAGGACUGGAT /FITC/
Sequence-based reagentRab3GAP1_detThis paperSCRINSHOT detection probeGACCGACUGAUAAGCAAGGAUTA /CY3/
Sequence-based reagentfz2_detThis paperSCRINSHOT detection probeGCGTTTGUTCTACCUGCC /FITC/
Sequence-based reagentfz_detThis paperSCRINSHOT detection probeCTTGTTCUACGAGTACUACAACTUTGA /FITC/
Sequence-based reagentfz4_detThis paperSCRINSHOT detection probeCAATCCTCUACTATAACUTAATGCGGT /CY3/
Sequence-based reagentfz3_detThis paperSCRINSHOT detection probeCTCCAACUCTTTCGTAUGCCA /CY5/
Sequence-based reagentspz _detThis paperSCRINSHOT detection probeCGGTTAUAAACGATAUCAATAUCGCG /CY5/
Sequence-based reagentspz4_detThis paperSCRINSHOT detection probeCAGACGATUTGCGATUGTATUGAAAT /CY3/
Sequence-based reagentspz6_detThis paperSCRINSHOT detection probeGACGAUACCCUACCCAAGG /CY5/
Sequence-based reagentspz5_detThis paperSCRINSHOT detection probeCCCACACAUGAAACACUCAATATC /FITC/
Commercial assay or kitSuperSignal West Femto Maximum Sensitivity SubstrateThermo FisherCat# 34096
Commercial assay or kitEffectene Transfection kitQIAGENCat# 301427
Commercial assay or kitDual-Glo Luciferase Assay SystemPromegaCat# E2940

Additional files

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Huazhen Wang
  2. Ludivine Bertonnier-Brouty
  3. Isabella Artner
  4. Jiayu Wen
  5. Qi Dai
(2025)
Drosophila hamlet mediates epithelial tissue assembly of the reproductive system
eLife 13:RP104164.
https://doi.org/10.7554/eLife.104164.3