Gut Microbes: Regulating uric acid

Certain strains of a bacterium found in the gut of some animals, Lactobacillus plantarum, are able to counter hyperuricemia, a condition caused by high levels of uric acid in the blood.
  1. Caihong Hu  Is a corresponding author
  1. College of Animal Sciences, Zhejiang University, China

Improvements in the quality of life have led to an increase in the incidence of hyperuricemia, a medical condition that can lead to kidney stones and gout, with cases increasingly affecting younger individuals (Johnson et al., 2018; Zhang et al., 2019). Hyperuricemia – the presence of abnormally high levels of uric acid in the blood – arises from interactions between the liver, the kidneys and the gut, which has a role in removing uric acid from the body (Dalbeth et al., 2021; Niu et al., 2018; Yun et al., 2017). Studies indicate that gut microbes are crucial to uric acid metabolism, and interventions such as probiotics, prebiotics and fecal microbiota transplants can help reduce hyperuricemia by altering the gut microbiota (Cao et al., 2022a; Wang et al., 2022; Zhao et al., 2022).

It has been shown that various strains of bacteria can alleviate hyperuricemia through two mechanisms: the direct hydrolysis of uric acid, and the hydrolase-mediated degradation of nucleosides that are the precursors of uric acid in the intestine. Limosilactobacillus fermentum JL-3 – a strain isolated from Chinese mud water – is capable of the hydrolysis of uric acid (Wu et al., 2021), whereas various strains of Lactobacillus, a well-known genus of bacteria, reduce uric acid levels through the hydrolysis of nucleosides in the intestine: these strains include L. paracasei (X11; Cao et al., 2022b) and strains of L. plantarum derived from Chinese sauerkraut (DM9218-A; Li et al., 2014) and Chinese mustard (GKM3; Hsu et al., 2019).

Recent studies have revealed that gene cloning can be used to identify specific hydrolases involved in the degradation of nucleosides for L. plantarum and L. aviarius (Li et al., 2023b; Li et al., 2023a). However, the precise mechanisms underlying the hydrolysis of the nucleoside precursors of uric acid have remained unclear. Now, in eLife, Wence Wang (South China Agricultural University), Qiang Tu (Shandong University) and colleagues – including Yang Fu as first author – report the results of in vitro studies and experiments on geese and mice that shed new light on the hydrolysis of these precursors (Fu et al., 2024).

The team isolated a strain called L. plantarum SQ001 from geese with hyperuricemia, and a genome-wide analysis revealed the presence of four genes that code for nucleoside hydrolysis-related enzymes (iunH, yxjA, rihA, rihC). In vitro experiments revealed that one of these enzymes, iunH, effectively catalyzes the hydrolysis of nucleosides, such as inosine and guanosine, converting them to nucleobases, as evidenced by metabolomics analysis. The hydrolysis mechanism was further validated through experiments that involved knocking out the gene for iunH in L. plantarum SQ001, and expressing it in E. coli. Although nucleosides are hydrolyzed to produce nucleobases, the direct link between this process and the reduction of uric acid remains unclear, possibly due to the transport of nucleosides and nucleobases in the gut. It may be that the lower uptake of these substances reduces the synthesis and accumulation of uric acid.

The team validated the functionality of L. plantarum SQ001 by establishing models of hyperuricemia in both geese and mice (Figure 1), and showed that this particular strain significantly enhanced the abundance of Lactobacillus in the gut of the host, which alleviated the symptoms of hyperuricemia by reducing the synthesis of uric acid and increasing its excretion. The fact that hyperuricemia was alleviated in mice may help with efforts to develop new ways to treat hyperuricemia and gout in humans.

Lactobacillus plantarum reduces uric acid synthesis through the hydrolysis of nucleosides.

A strain of the bacterium L. plantarum was isolated from the large intestine of geese with hyperuricemia, a condition caused by the presence of abnormally high levels of uric acid in the blood (top left). In vitro experiments showed that the presence of the bacteria led to an increase in the degradation of nucleosides that are precursors of uric acid. Administering the bacteria to healthy geese and mice (top right) also led to a reduction in the levels of uric acid in the blood. Other experiments showed that L. plantarum absorbed the nucleosides, and that an enzyme called iunH broke down the nucleosides to produce nucleobases (bottom).

Figure created with figdraw.com.

References

Article and author information

Author details

  1. Caihong Hu

    Caihong Hu is in the College of Animal Sciences, Zhejiang University, China

    For correspondence
    chhu@zju.edu.cn
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5445-4532

Publication history

  1. Version of Record published:

Copyright

© 2024, Hu

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Caihong Hu
(2024)
Gut Microbes: Regulating uric acid
eLife 13:e104493.
https://doi.org/10.7554/eLife.104493

Further reading

    1. Microbiology and Infectious Disease
    2. Plant Biology
    Nyasha Charura, Ernesto Llamas ... Alga Zuccaro
    Research Article

    Programmed cell death occurring during plant development (dPCD) is a fundamental process integral for plant growth and reproduction. Here, we investigate the connection between developmentally controlled PCD and fungal accommodation in Arabidopsis thaliana roots, focusing on the root cap-specific transcription factor ANAC033/SOMBRERO (SMB) and the senescence-associated nuclease BFN1. Mutations of both dPCD regulators increase colonization by the beneficial fungus Serendipita indica, primarily in the differentiation zone. smb-3 mutants additionally exhibit hypercolonization around the meristematic zone and a delay of S. indica-induced root-growth promotion. This demonstrates that root cap dPCD and rapid post-mortem clearance of cellular corpses represent a physical defense mechanism restricting microbial invasion of the root. Additionally, reporter lines and transcriptional analysis revealed that BFN1 expression is downregulated during S. indica colonization in mature root epidermal cells, suggesting a transcriptional control mechanism that facilitates the accommodation of beneficial microbes in the roots.

    1. Chromosomes and Gene Expression
    2. Microbiology and Infectious Disease
    Maruti Nandan Rai, Qing Lan ... Koon Ho Wong
    Research Article Updated

    Candida glabrata can thrive inside macrophages and tolerate high levels of azole antifungals. These innate abilities render infections by this human pathogen a clinical challenge. How C. glabrata reacts inside macrophages and what is the molecular basis of its drug tolerance are not well understood. Here, we mapped genome-wide RNA polymerase II (RNAPII) occupancy in C. glabrata to delineate its transcriptional responses during macrophage infection in high temporal resolution. RNAPII profiles revealed dynamic C. glabrata responses to macrophages with genes of specialized pathways activated chronologically at different times of infection. We identified an uncharacterized transcription factor (CgXbp1) important for the chronological macrophage response, survival in macrophages, and virulence. Genome-wide mapping of CgXbp1 direct targets further revealed its multi-faceted functions, regulating not only virulence-related genes but also genes associated with drug resistance. Finally, we showed that CgXbp1 indeed also affects fluconazole resistance. Overall, this work presents a powerful approach for examining host-pathogen interaction and uncovers a novel transcription factor important for C. glabrata’s survival in macrophages and drug tolerance.