Stable G protein-effector complexes in striatal neurons: mechanism of assembly and role in neurotransmitter signaling

  1. Keqiang Xie
  2. Ikuo Masuho
  3. Chien-Cheng Shih
  4. Yan Cao
  5. Keita Sasaki
  6. Chun Wan J Lai
  7. Pyung-Lim Han
  8. Hiroshi Ueda
  9. Carmen W Dessauer
  10. Michelle E Ehrlich
  11. Baoji Xu
  12. Barry M Willardson
  13. Kirill A Martemyanov  Is a corresponding author
  1. The Scripps Research Institute, United States
  2. Nagasaki University, Japan
  3. Brigham Young University, United States
  4. Ewha Womans University, Republic of Korea
  5. The University of Texas Health Science Center, United States
  6. Icahn School of Medicine at Mount Sinai, United States

Abstract

In the striatum, signaling via G protein-coupled neurotransmitter receptors is essential for motor control. Critical to this process is the effector enzyme adenylyl cyclase type 5 (AC5) that produces second messenger cAMP upon receptor-mediated activation by G protein Golf. However, the molecular organization of the Golf-AC5 signaling axis is not well understood. In this study, we report that in the striatum AC5 exists in a stable pre-coupled complex with subunits of Golf heterotrimer. We use genetic mouse models with disruption in individual components of the complex to reveal hierarchical order of interactions required for AC5-Golf stability. We further identify that the assembly of AC5-Golf complex is mediated by PhLP1 chaperone that plays central role in neurotransmitter receptor coupling to cAMP production motor learning. These findings provide evidence for the existence of stable G protein-effector signaling complexes and identify a new component essential for their assembly.

Article and author information

Author details

  1. Keqiang Xie

    Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ikuo Masuho

    Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Chien-Cheng Shih

    Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yan Cao

    Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Keita Sasaki

    Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Chun Wan J Lai

    Department of Chemistry and Biochemistry, Brigham Young University, Provo, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Pyung-Lim Han

    Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  8. Hiroshi Ueda

    Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Carmen W Dessauer

    Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Michelle E Ehrlich

    Departments of Neurology, Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Baoji Xu

    Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Barry M Willardson

    Department of Chemistry and Biochemistry, Brigham Young University, Provo, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Kirill A Martemyanov

    Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
    For correspondence
    kirill@scripps.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All procedures were approved by the Institutional Animal Care and Use Committee (IACUC) protocol (#14-001) at The Scripps Research Institute.

Copyright

© 2015, Xie et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,735
    views
  • 431
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Keqiang Xie
  2. Ikuo Masuho
  3. Chien-Cheng Shih
  4. Yan Cao
  5. Keita Sasaki
  6. Chun Wan J Lai
  7. Pyung-Lim Han
  8. Hiroshi Ueda
  9. Carmen W Dessauer
  10. Michelle E Ehrlich
  11. Baoji Xu
  12. Barry M Willardson
  13. Kirill A Martemyanov
(2015)
Stable G protein-effector complexes in striatal neurons: mechanism of assembly and role in neurotransmitter signaling
eLife 4:e10451.
https://doi.org/10.7554/eLife.10451

Share this article

https://doi.org/10.7554/eLife.10451

Further reading

    1. Cell Biology
    Fatima Tleiss, Martina Montanari ... C Leopold Kurz
    Research Article

    Multiple gut antimicrobial mechanisms are coordinated in space and time to efficiently fight foodborne pathogens. In Drosophila melanogaster, production of reactive oxygen species (ROS) and antimicrobial peptides (AMPs) together with intestinal cell renewal play a key role in eliminating gut microbes. A complementary mechanism would be to isolate and treat pathogenic bacteria while allowing colonization by commensals. Using real-time imaging to follow the fate of ingested bacteria, we demonstrate that while commensal Lactiplantibacillus plantarum freely circulate within the intestinal lumen, pathogenic strains such as Erwinia carotovora or Bacillus thuringiensis, are blocked in the anterior midgut where they are rapidly eliminated by antimicrobial peptides. This sequestration of pathogenic bacteria in the anterior midgut requires the Duox enzyme in enterocytes, and both TrpA1 and Dh31 in enteroendocrine cells. Supplementing larval food with hCGRP, the human homolog of Dh31, is sufficient to block the bacteria, suggesting the existence of a conserved mechanism. While the immune deficiency (IMD) pathway is essential for eliminating the trapped bacteria, it is dispensable for the blockage. Genetic manipulations impairing bacterial compartmentalization result in abnormal colonization of posterior midgut regions by pathogenic bacteria. Despite a functional IMD pathway, this ectopic colonization leads to bacterial proliferation and larval death, demonstrating the critical role of bacteria anterior sequestration in larval defense. Our study reveals a temporal orchestration during which pathogenic bacteria, but not innocuous, are confined in the anterior part of the midgut in which they are eliminated in an IMD-pathway-dependent manner.

    1. Cancer Biology
    2. Cell Biology
    Kourosh Hayatigolkhatmi, Chiara Soriani ... Simona Rodighiero
    Tools and Resources

    Understanding the cell cycle at the single-cell level is crucial for cellular biology and cancer research. While current methods using fluorescent markers have improved the study of adherent cells, non-adherent cells remain challenging. In this study, we addressed this gap by combining a specialized surface to enhance cell attachment, the FUCCI(CA)2 sensor, an automated image analysis pipeline, and a custom machine learning algorithm. This approach enabled precise measurement of cell cycle phase durations in non-adherent cells. This method was validated in acute myeloid leukemia cell lines NB4 and Kasumi-1, which have unique cell cycle characteristics, and we tested the impact of cell cycle-modulating drugs on NB4 cells. Our cell cycle analysis system, which is also compatible with adherent cells, is fully automated and freely available, providing detailed insights from hundreds of cells under various conditions. This report presents a valuable tool for advancing cancer research and drug development by enabling comprehensive, automated cell cycle analysis in both adherent and non-adherent cells.