Stable G protein-effector complexes in striatal neurons: mechanism of assembly and role in neurotransmitter signaling

  1. Keqiang Xie
  2. Ikuo Masuho
  3. Chien-Cheng Shih
  4. Yan Cao
  5. Keita Sasaki
  6. Chun Wan J Lai
  7. Pyung-Lim Han
  8. Hiroshi Ueda
  9. Carmen W Dessauer
  10. Michelle E Ehrlich
  11. Baoji Xu
  12. Barry M Willardson
  13. Kirill A Martemyanov  Is a corresponding author
  1. The Scripps Research Institute, United States
  2. Nagasaki University, Japan
  3. Brigham Young University, United States
  4. Ewha Womans University, Republic of Korea
  5. The University of Texas Health Science Center, United States
  6. Icahn School of Medicine at Mount Sinai, United States

Abstract

In the striatum, signaling via G protein-coupled neurotransmitter receptors is essential for motor control. Critical to this process is the effector enzyme adenylyl cyclase type 5 (AC5) that produces second messenger cAMP upon receptor-mediated activation by G protein Golf. However, the molecular organization of the Golf-AC5 signaling axis is not well understood. In this study, we report that in the striatum AC5 exists in a stable pre-coupled complex with subunits of Golf heterotrimer. We use genetic mouse models with disruption in individual components of the complex to reveal hierarchical order of interactions required for AC5-Golf stability. We further identify that the assembly of AC5-Golf complex is mediated by PhLP1 chaperone that plays central role in neurotransmitter receptor coupling to cAMP production motor learning. These findings provide evidence for the existence of stable G protein-effector signaling complexes and identify a new component essential for their assembly.

Article and author information

Author details

  1. Keqiang Xie

    Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ikuo Masuho

    Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Chien-Cheng Shih

    Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yan Cao

    Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Keita Sasaki

    Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Chun Wan J Lai

    Department of Chemistry and Biochemistry, Brigham Young University, Provo, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Pyung-Lim Han

    Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  8. Hiroshi Ueda

    Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Carmen W Dessauer

    Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Michelle E Ehrlich

    Departments of Neurology, Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Baoji Xu

    Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Barry M Willardson

    Department of Chemistry and Biochemistry, Brigham Young University, Provo, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Kirill A Martemyanov

    Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
    For correspondence
    kirill@scripps.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All procedures were approved by the Institutional Animal Care and Use Committee (IACUC) protocol (#14-001) at The Scripps Research Institute.

Copyright

© 2015, Xie et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,741
    views
  • 431
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Keqiang Xie
  2. Ikuo Masuho
  3. Chien-Cheng Shih
  4. Yan Cao
  5. Keita Sasaki
  6. Chun Wan J Lai
  7. Pyung-Lim Han
  8. Hiroshi Ueda
  9. Carmen W Dessauer
  10. Michelle E Ehrlich
  11. Baoji Xu
  12. Barry M Willardson
  13. Kirill A Martemyanov
(2015)
Stable G protein-effector complexes in striatal neurons: mechanism of assembly and role in neurotransmitter signaling
eLife 4:e10451.
https://doi.org/10.7554/eLife.10451

Share this article

https://doi.org/10.7554/eLife.10451

Further reading

    1. Cell Biology
    Giuliana Giamundo, Daniela Intartaglia ... Ivan Conte
    Research Article

    Endosomes have emerged as major signaling hubs where different internalized ligand–receptor complexes are integrated and the outcome of signaling pathways are organized to regulate the strength and specificity of signal transduction events. Ezrin, a major membrane–actin linker that assembles and coordinates macromolecular signaling complexes at membranes, has emerged recently as an important regulator of lysosomal function. Here, we report that endosomal-localized EGFR/Ezrin complex interacts with and triggers the inhibition of the Tuberous Sclerosis Complex (TSC complex) in response to EGF stimuli. This is regulated through activation of the AKT signaling pathway. Loss of Ezrin was not sufficient to repress TSC complex by EGF and culminated in translocation of TSC complex to lysosomes triggering suppression of mTORC1 signaling. Overexpression of constitutively active EZRINT567D is sufficient to relocalize TSC complex to the endosomes and reactivate mTORC1. Our findings identify EZRIN as a critical regulator of autophagy via TSC complex in response to EGF stimuli and establish the central role of early endosomal signaling in the regulation of mTORC1. Consistently, Medaka fish deficient for Ezrin exhibit defective endo-lysosomal pathway, attributable to the compromised EGFR/AKT signaling, ultimately leading to retinal degeneration. Our data identify a pivotal mechanism of endo-lysosomal signaling involving Ezrin and its associated EGFR/TSC complex, which are essential for retinal function.

    1. Cell Biology
    Kelsey R Baron, Samantha Oviedo ... R Luke Wiseman
    Research Article

    Excessive mitochondrial fragmentation is associated with the pathologic mitochondrial dysfunction implicated in the pathogenesis of etiologically diverse diseases, including many neurodegenerative disorders. The integrated stress response (ISR) – comprising the four eIF2α kinases PERK, GCN2, PKR, and HRI – is a prominent stress-responsive signaling pathway that regulates mitochondrial morphology and function in response to diverse types of pathologic insult. This suggests that pharmacologic activation of the ISR represents a potential strategy to mitigate pathologic mitochondrial fragmentation associated with human disease. Here, we show that pharmacologic activation of the ISR kinases HRI or GCN2 promotes adaptive mitochondrial elongation and prevents mitochondrial fragmentation induced by the calcium ionophore ionomycin. Further, we show that pharmacologic activation of the ISR reduces mitochondrial fragmentation and restores basal mitochondrial morphology in patient fibroblasts expressing the pathogenic D414V variant of the pro-fusion mitochondrial GTPase MFN2 associated with neurological dysfunctions, including ataxia, optic atrophy, and sensorineural hearing loss. These results identify pharmacologic activation of ISR kinases as a potential strategy to prevent pathologic mitochondrial fragmentation induced by disease-relevant chemical and genetic insults, further motivating the pursuit of highly selective ISR kinase-activating compounds as a therapeutic strategy to mitigate mitochondrial dysfunction implicated in diverse human diseases.