Abstract

Neoblasts are an abundant, heterogeneous population of adult stem cells (ASCs) that facilitate the maintenance of planarian tissues and organs, providing a powerful system to study ASC self-renewal and differentiation dynamics. It is unknown how the collective output of neoblasts transit through differentiation pathways to produce specific cell types. The planarian epidermis is a simple tissue that undergoes rapid turnover. We found that as epidermal progeny differentiate, they progress through multiple spatiotemporal transition states with distinct gene expression profiles. We also identified a conserved early growth response family transcription factor, egr-5, that is essential for epidermal differentiation. Disruption of epidermal integrity by egr-5 RNAi triggers a global stress response that induces the proliferation of neoblasts and the concomitant expansion of not only epidermal, but also multiple progenitor cell populations. Our results further establish the planarian epidermis as a novel paradigm to uncover the molecular mechanisms regulating ASC specification in vivo.

Article and author information

Author details

  1. Kimberly C Tu

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  2. Li-Chun Cheng

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  3. Hanh TK Vu

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  4. Jeffrey J Lange

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  5. Sean A McKinney

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  6. Chris W Seidel

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  7. Alejandro Sánchez Alvarado

    Stowers Institute for Medical Research, Kansas City, United States
    For correspondence
    asa@stowers.org
    Competing interests
    Alejandro Sánchez Alvarado, Reviewing editor, eLIFE.

Copyright

© 2015, Tu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,609
    views
  • 734
    downloads
  • 99
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kimberly C Tu
  2. Li-Chun Cheng
  3. Hanh TK Vu
  4. Jeffrey J Lange
  5. Sean A McKinney
  6. Chris W Seidel
  7. Alejandro Sánchez Alvarado
(2015)
Egr-5 is a post-mitotic regulator of planarian epidermal differentiation
eLife 4:e10501.
https://doi.org/10.7554/eLife.10501

Share this article

https://doi.org/10.7554/eLife.10501

Further reading

    1. Cell Biology
    Tomoharu Kanie, Beibei Liu ... Peter K Jackson
    Research Article

    Distal appendages are nine-fold symmetric blade-like structures attached to the distal end of the mother centriole. These structures are critical for formation of the primary cilium, by regulating at least four critical steps: ciliary vesicle recruitment, recruitment and initiation of intraflagellar transport (IFT), and removal of CP110. While specific proteins that localize to the distal appendages have been identified, how exactly each protein functions to achieve the multiple roles of the distal appendages is poorly understood. Here we comprehensively analyze known and newly discovered distal appendage proteins (CEP83, SCLT1, CEP164, TTBK2, FBF1, CEP89, KIZ, ANKRD26, PIDD1, LRRC45, NCS1, CEP15) for their precise localization, order of recruitment, and their roles in each step of cilia formation. Using CRISPR-Cas9 knockouts, we show that the order of the recruitment of the distal appendage proteins is highly interconnected and a more complex hierarchy. Our analysis highlights two protein modules, CEP83-SCLT1 and CEP164-TTBK2, as critical for structural assembly of distal appendages. Functional assays revealed that CEP89 selectively functions in RAB34+ ciliary vesicle recruitment, while deletion of the integral components, CEP83-SCLT1-CEP164-TTBK2, severely compromised all four steps of cilium formation. Collectively, our analyses provide a more comprehensive view of the organization and the function of the distal appendage, paving the way for molecular understanding of ciliary assembly.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Santi Mestre-Fos, Lucas Ferguson ... Jamie HD Cate
    Research Article

    Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs). Using Quick-irCLIP and alternative polyadenylation (APA) Seq, we show eIF3 crosslinks predominantly with 3’ untranslated region (3’-UTR) termini of multiple mRNA isoforms, adjacent to the poly(A) tail. Furthermore, we find that eIF3 engagement at 3’-UTR ends is dependent on polyadenylation. High eIF3 crosslinking at 3’-UTR termini of mRNAs correlates with high translational activity, as determined by ribosome profiling, but not with translational efficiency. The results presented here show that eIF3 engages with 3’-UTR termini of highly translated mRNAs, likely reflecting a general rather than specific regulatory function of eIF3, and supporting a role of mRNA circularization in the mechanisms governing mRNA translation.