Genomic DNA transposition induced by human PGBD5

  1. Anton G Henssen
  2. Elizabeth Henaff
  3. Eileen Jiang
  4. Amy R Eisenberg
  5. Julianne R Carson
  6. Camila M Villasante
  7. Mondira Ray
  8. Eric Still
  9. Melissa Burns
  10. Jorge Gandara
  11. Cedric Feschotte
  12. Christopher E Mason
  13. Alex Kentsis  Is a corresponding author
  1. Memorial Sloan Kettering Cancer Center, United States
  2. Weill Cornell Medical College, United States
  3. Harvard Medical School, United States
  4. University of Utah School of Medicine, United States

Abstract

Transposons are mobile genetic elements that are found in nearly all organisms, including humans. Mobilization of DNA transposons by transposase enzymes can cause genomic rearrangements, but our knowledge of human genes derived from transposases is limited. Here, we find that the protein encoded by human PGBD5, the most evolutionarily conserved transposable element-derived gene in vertebrates, can induce stereotypical cut-and-paste DNA transposition in human cells. Genomic integration activity of PGBD5 requires distinct aspartic acid residues in its transposase domain, and specific DNA sequences containing inverted terminal repeats with similarity to piggyBac transposons. DNA transposition catalyzed by PGBD5 in human cells occurs genome-wide, with precise transposon excision and preference for insertion at TTAA sites. The apparent conservation of DNA transposition activity by PGBD5 suggests that genomic remodeling contributes to its biological function.

Article and author information

Author details

  1. Anton G Henssen

    Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Elizabeth Henaff

    Institute for Computational Biomedicine, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Eileen Jiang

    Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Amy R Eisenberg

    Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Julianne R Carson

    Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Camila M Villasante

    Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Mondira Ray

    Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Eric Still

    Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Melissa Burns

    Boston Children's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jorge Gandara

    Institute for Computational Biomedicine, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Cedric Feschotte

    Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Christopher E Mason

    Institute for Computational Biomedicine, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Alex Kentsis

    Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
    For correspondence
    kentsisresearchgroup@gmail.com
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Michael R Botchan, University of California, Berkeley, United States

Version history

  1. Received: August 3, 2015
  2. Accepted: September 23, 2015
  3. Accepted Manuscript published: September 25, 2015 (version 1)
  4. Version of Record published: October 29, 2015 (version 2)

Copyright

© 2015, Henssen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,570
    Page views
  • 989
    Downloads
  • 53
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anton G Henssen
  2. Elizabeth Henaff
  3. Eileen Jiang
  4. Amy R Eisenberg
  5. Julianne R Carson
  6. Camila M Villasante
  7. Mondira Ray
  8. Eric Still
  9. Melissa Burns
  10. Jorge Gandara
  11. Cedric Feschotte
  12. Christopher E Mason
  13. Alex Kentsis
(2015)
Genomic DNA transposition induced by human PGBD5
eLife 4:e10565.
https://doi.org/10.7554/eLife.10565

Share this article

https://doi.org/10.7554/eLife.10565

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Erandi Velazquez-Miranda, Ming He
    Insight

    Endothelial cell subpopulations are characterized by unique gene expression profiles, epigenetic landscapes and functional properties.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.