SOX2 O-GlcNAcylation alters its protein-protein interactions and genomic occupancy to modulate gene expression in pluripotent cells

  1. Samuel A Myers
  2. Sailaja Peddada
  3. Nilanjana Chatterjee
  4. Tara Freidreich
  5. Kiichrio Tomoda
  6. Gregor Krings
  7. Sean Thomas
  8. Michael Broeker
  9. Jason Maynard
  10. Matthew Thomson
  11. Katherine Pollard
  12. Shinya Yamanaka
  13. Alma L Burlingame
  14. Barbara Panning  Is a corresponding author
  1. University of California, San Francisco, United States
  2. Gladstone Institute University of California, San Francisco, United States

Abstract

The transcription factor SOX2 is central in establishing and maintaining pluripotency. The processes that modulate SOX2 activity to promote pluripotency are not well understood. Here, we show SOX2 is O-GlcNAc modified in its transactivation domain during reprogramming and in mouse embryonic stem cells (mESCs). Upon induction of differentiation SOX2 O-GlcNAcylation at serine 248 is decreased. Replacing wild type with an O-GlcNAc-deficient SOX2 (S248A) increases reprogramming efficiency. ESCs with O-GlcNAc-deficient SOX2 exhibit alterations in gene expression. This change correlates with altered protein-protein interactions and genomic occupancy of the O-GlcNAc-deficient SOX2 compared to wild type. In addition, SOX2 O-GlcNAcylation impairs the SOX2-PARP1 interaction, which has been shown to regulate ESC self-renewal. These findings show that SOX2 activity is modulated by O-GlcNAc modification, and provide a novel regulatory mechanism for this crucial pluripotency transcription factor.

Article and author information

Author details

  1. Samuel A Myers

    Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  2. Sailaja Peddada

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  3. Nilanjana Chatterjee

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  4. Tara Freidreich

    Gladstone Institute University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  5. Kiichrio Tomoda

    Gladstone Institute University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  6. Gregor Krings

    Department of Pathology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  7. Sean Thomas

    Gladstone Institute University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  8. Michael Broeker

    Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  9. Jason Maynard

    Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  10. Matthew Thomson

    Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  11. Katherine Pollard

    Gladstone Institute University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  12. Shinya Yamanaka

    Gladstone Institute University of California, San Francisco, San Francisco, United States
    Competing interests
    Shinya Yamanaka, scientific advisor of iPS Academia Japan without salary.
  13. Alma L Burlingame

    Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  14. Barbara Panning

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    For correspondence
    barbara.panning@gmail.com
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. Kathrin Plath, University of California, Los Angeles, United States

Publication history

  1. Received: August 8, 2015
  2. Accepted: March 5, 2016
  3. Accepted Manuscript published: March 7, 2016 (version 1)
  4. Accepted Manuscript updated: March 22, 2016 (version 2)
  5. Version of Record published: April 19, 2016 (version 3)

Copyright

© 2016, Myers et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,395
    Page views
  • 911
    Downloads
  • 39
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Samuel A Myers
  2. Sailaja Peddada
  3. Nilanjana Chatterjee
  4. Tara Freidreich
  5. Kiichrio Tomoda
  6. Gregor Krings
  7. Sean Thomas
  8. Michael Broeker
  9. Jason Maynard
  10. Matthew Thomson
  11. Katherine Pollard
  12. Shinya Yamanaka
  13. Alma L Burlingame
  14. Barbara Panning
(2016)
SOX2 O-GlcNAcylation alters its protein-protein interactions and genomic occupancy to modulate gene expression in pluripotent cells
eLife 5:e10647.
https://doi.org/10.7554/eLife.10647
  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Sebastian Strauss, Julia Acker ... Ralf Jungmann
    Research Article

    Rotaviruses transcribe eleven distinct RNAs that must be co-packaged prior to their replication to make an infectious virion. During infection, nontranslating rotavirus transcripts accumulate in cytoplasmic protein-RNA granules known as viroplasms that support segmented genome assembly and replication via a poorly understood mechanism. Here we analysed the RV transcriptome by combining DNA-barcoded smFISH of rotavirus-infected cells. Rotavirus RNA stoichiometry in viroplasms appears to be distinct from the cytoplasmic transcript distribution, with the largest transcript being the most enriched in viroplasms, suggesting a selective RNA enrichment mechanism. While all eleven types of transcripts accumulate in viroplasms, their stoichiometry significantly varied between individual viroplasms. Accumulation of transcripts requires the presence of 3' untranslated terminal regions and viroplasmic localisation of the viral polymerase VP1, consistent with the observed lack of polyadenylated transcripts in viroplasms. Our observations reveal similarities between viroplasms and other cytoplasmic RNP granules and identify viroplasmic proteins as drivers of viral RNA assembly during viroplasm formation.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Anna Durner, Ellis Durner, Annette Nicke
    Research Article Updated

    The large intracellular C-terminus of the pro-inflammatory P2X7 ion channel receptor (P2X7R) is associated with diverse P2X7R-specific functions. Cryo-EM structures of the closed and ATP-bound open full-length P2X7R recently identified a membrane-associated anchoring domain, an open-state stabilizing “cap” domain, and a globular “ballast domain” containing GTP/GDP and dinuclear Zn2+-binding sites with unknown functions. To investigate protein dynamics during channel activation, we improved incorporation of the environment-sensitive fluorescent unnatural amino acid L-3-(6-acetylnaphthalen-2-ylamino)–2-aminopropanoic acid (ANAP) into Xenopus laevis oocyte-expressed P2X7Rs and performed voltage clamp fluorometry. While we confirmed predicted conformational changes within the extracellular and the transmembrane domains, only 3 out of 41 mutants containing ANAP in the C-terminal domain resulted in ATP-induced fluorescence changes. We conclude that the ballast domain functions rather independently from the extracellular ATP binding domain and might require activation by additional ligands and/or protein interactions. Novel tools to study these are presented.