Extrusion-modulated DnaA activity oscillations coordinate DNA replication with biomass growth

  1. Dengjin Li
  2. Hai Zheng
  3. Yang Bai
  4. Zheng Zhang
  5. Hao Cheng
  6. Xiongliang Huang
  7. Ting Wei
  8. Matthew Chang
  9. Arieh Zaritsky
  10. Terence Hwa
  11. Chenli Liu  Is a corresponding author
  1. Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
  2. University of Chinese Academy of Sciences, China
  3. NUS Synthetic Biology for Clinical and Technological Innovation and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore; National Centre for Engineering Biology, Singapore
  4. Faculty of Natural Sciences, Ben-Gurion University of the Negev, Israel
  5. Department of Physics & Department of Molecular Biology, University of California at San Diego, United States
9 figures, 6 tables and 1 additional file

Figures

Coordination of biomass growth and DNA replication through replication initiation and DnaA activity oscillations.

(A) Schematic representation of the discrepancy between biomass accumulation and DNA replication. While biomass grows exponentially, DNA synthesis progresses linearly, necessitating replication initiation events to maintain coordination. (B) Mechanistic model for biomass-DNA coordination in bacteria. A molecular sensor detects deviations between cell mass and DNA content, transmitting this information to regulatory controllers that compensate by either increasing DNA replication or restricting biomass accumulation. (C) Illustration of cyclic DnaA activity oscillations aligning with replication initiation to ensure precise cell cycle control.

Construction and characterization of the dnaA-titratable strain.

(A) Schematic of the dnaA-titratable strain. A dnaA gene under the control of the Ptet promoter was inserted near oriC and regulated by a Ptet-tetR feedback loop integrated at the intS locus, enabling fine-tuned expression control. The native dnaA gene was replaced with a kanamycin resistance cassette (kanr). (BF) Characterization of dnaA-titratable cells (circle) and wild-type MG1655 cells (triangle) grown in rich defined medium with glycerol (M6) under varying aTc concentrations. Measured parameters include: (B) dnaA mRNA levels; (C) growth rate; (D) population-averaged cellular mass; (E) population-averaged oriC numbers; (F) initiation mass (red, left axis); and the initiation to division period (C+D) (blue, right axis). The dnaA mRNA levels were normalized to that in wild-type cells. Cellular mass was determined by OD₆₀₀ divided by cell number concentration. oriC copy numbers were measured using a run-out assay, and initiation mass was calculated as the ratio of cellular mass to oriC numbers. Data represent means ± SD (n = 5 biological replicates). (G) Relationship between relative initiation mass and relative dnaA mRNA levels, compared with predictions from the initiation titration model (blue line) and the switch model (purple line). The relative dnaA mRNA levels in experiments are compared to relative DnaA expression rate αA in models. Experimental data are overlaid for validation.

Figure 2—source data 1

Source data for Figure 2 showing the physiological characteristics and model predictions of the dnaA-titratable cells under different dnaA expression levels.

https://cdn.elifesciences.org/articles/107214/elife-107214-fig2-data1-v1.xlsx
Figure 3 with 1 supplement
Development of a DnaA activity reporter system.

(A) Schematic of promoter design and screening. Sixty-seven synthetic promoters were constructed by inserting various DnaA-boxes around the promoter core to drive gfp expression in a dnaA-titratable strain, where dnaA expression was regulated by aTc concentration. After pre-cultivation, GFP fluorescence per OD₆₀₀ was measured using a microplate reader in cells grown under low (0.5 ng∙ml–1) or high (50 ng∙ml–1) aTc concentrations to determine repression fold-change. (B) Repression fold-change of synthetic promoters. Pcon (a promoter lacking DnaA-boxes) and Pnative (the endogenous dnaA promoter) served as negative and positive controls, shown in gray and yellow, respectively. (C) Response curves of three promoters to varying dnaA expression levels, with their promoter architectures shown on the right. Promoter activity was assessed by relative gfp mRNA levels, normalized to the lowest dnaA expression condition. Schematic (D) and response curves (E) of Psyn66 and Pnative responses to SeqA in the seqA-titratable strain. Promoter activity was quantified from gfp transcript levels in seqA-titratable cells containing the Psyn66-GFP plasmid, normalized to the lowest seqA expression level. All cells were grown in rich defined medium supplemented with glycerol across different aTc concentrations. Data represent mean ± SD from 3 biological replicates (B, C, E).

Figure 3—source data 1

Source data for Figure 3 showing the response characteristics of the synthetic promoter under different expression levels of DnaA and SeqA proteins.

https://cdn.elifesciences.org/articles/107214/elife-107214-fig3-data1-v1.xlsx
Figure 3—figure supplement 1
Screening a library of synthetic promoters reveals potential candidates to report DnaA activity.

For each synthetic promoter, various combinations of DnaA-boxes were inserted near the promoter core, and their repression fold in response to elevated DnaA expression was measured in dnaA-titratable cells grown in 0.5 ng·ml–1 aTc compared to cells grown in 50 ng·ml–1 aTc, using a microplate reader. Error bars represent the standard deviation (SD) of three replicates.

DnaA activity oscillations decoupled from dnaA transcription fluctuations.

(A) Representative lacZ mRNA fluorescence in situ hybridization (FISH) images of MG1655 ∆lac cells transformed with lacZ expression plasmids driven by Psyn66 (DnaA-boxes around promoter core), Pcon (no DnaA-box around promoter core), or Pneg (mutated promoter core). Yellow outlines indicate cell boundaries identified from phase-contrast images. (B) Relative lacZ mRNA concentrations driven by Psyn66 (left) and Pcon (right) across different cell volumes. Relative concentrations were determined from volume-specific lacZ mRNA fluorescence intensities, normalized to the population average. Volume-binned data for Psyn66 ([mZ](Psyn66)) and Pcon ([mZ](Pcon)) are shown as open circles and were used to calculate ksyn66. (C) Schematic of a strain with autoregulated dnaA transcription carrying a DnaA activity reporter plasmid. Cell cycle-dependent fluctuations in relative DnaA activity (D) and relative dnaA mRNA concentrations (E) in cells from panel C, grown in rich defined medium supplemented with glucose. Relative DnaA activity (ksyn661), calculated from volume-binned data in panel B, was smoothed and plotted as a red curve (D). Relative dnaA mRNA concentrations were determined from volume-specific dnaA mRNA fluorescence intensities, normalized to the population average, with volume-binned data shown as open circles (E). Dashed lines indicate the cell volume at peak DnaA activity (D) and the minimum dnaA mRNA content (E). (FH) Same as panels CE, but for cells with aTc induced dnaA transcription, grown in rich defined medium supplemented with glycerol under 2 ng∙ml–1 aTc induction. More than 8000 cells were analyzed per growth condition, with at least 150 cells per bin; all error bars correspond to standard error of the mean (SEM).

Figure 4—source data 1

Source data for Figure 4 showing the changes in lacZ mRNA concentration driven by the reporter promoter with cell size, and the cell cycle-dependent variations in DnaA activity and dnaA mRNA concentration.

https://cdn.elifesciences.org/articles/107214/elife-107214-fig4-data1-v1.xlsx
Figure 5 with 1 supplement
Tight correlation between DnaA activity oscillations and DNA replication initiation.

(A) Cell cycle-dependent DnaA activity oscillations in wild-type cells across various growth conditions. DnaA activity is represented by ksyn661. Volume-binned DnaA activity (red circles) was smoothed and plotted as a red curve. The representative birth-to-division cell cycle, defined as the cell volume doubling interval containing the majority of cells, is shaded in gray. The vertical line indicates the cell volume at replication initiation (Vi). (B) Cell cycle-dependent DnaA activity oscillations in dnaA-titratable cells grown in M6 medium with varying aTc concentrations. More than 8000 cells were analyzed per growth condition, with at least 150 cells per bin; error bars show the mean ± SEM. (C) Correlation between V and Vi in wild-type (squares) and dnaA-titratable (circles) cells. V represents the cell volume at the peak of DnaA activity within the representative birth-to-division cell cycle. The black line indicates equivalence between V and Vi.

Figure 5—source data 1

Source data for Figure 5 showing DnaA activity oscillations and DNA replication initiation in wild-type cells cultivated under various growth media and in dnaA-titratable cells cultivated under various induction levels.

https://cdn.elifesciences.org/articles/107214/elife-107214-fig5-data1-v1.xlsx
Figure 5—figure supplement 1
Determination of cell volume at replication initiation and representative birth-to-division cell cycle.

(AB) Distribution of cellular oriC content (up) and cell volume (low) for cells shown in Figure 4C cultivated in various growth media with noted doubling time (A), and for cells shown in Figure 4F grown in M6 medium with noted aTc concentrations (B). Cellular oriC was determined using run-out experiments followed by flow cytometry, and cell volume was obtained from phase-contrast images from mRNA fluorescence in situ hybridization (FISH) experiments. (C) Calculation of the cell volume at replication initiation. Based on panels A and B, the population-averaged cellular oriC content (o¯) and cell volume (V¯) were determined, then the initiation volume can be deduced accordingly. Additionally, the oriC number at the initiation time (NoriCini.) was calculated based on o¯. Cell volume at the replication initiation was derived by definition. (D) Illustration of the determination of the representative birth-to-division cell cycle for DnaA activity oscillations. The cell volume distribution is analyzed to calculate the number of cells within each volume-doubling range. The range with the most cell counts is defined as the representative birth-to-division cycle, which is shaded in gray.

Figure 6 with 1 supplement
An extrusion model explains DnaA shutdown dynamics.

(A) Genetic circuit of the deactivated CRISPR-Cas system for dnaA transcription shutdown. dnaA gene is targeted by a constitutively expressed sgRNA, while dUn1Cas12f1 expression is inhibited by TetR repressor. These transcription units are separated by terminators. The cassette was integrated into the chromosome near the oriC locus. DnaA shutdown is induced by the addition of aTc. (B) Time course of relative dnaA mRNA levels (red line, left axis) and total oriC number (green line, right axis) following the addition of 50 ng∙ml–1 aTc at time 0 (dashed line). dnaA mRNA levels were normalized to wild-type levels, and oriC numbers were normalized to their initial values. Error bars indicate mean ± SD (n = 3 biologically independent experiments). (C) Predicted increases in total oriC number during dnaA transcription shutdown based on three models: the titration model, switch model, and extrusion model. Shutdown was simulated by setting dnaA transcription to zero at time 0 (dashed line). (D) Schematic of the extrusion model. The model introduces extruder(s) as additional regulators of biomass-DNA coordination, complementing the role of DnaA (left). Increased binding of the extruder to DNA promotes the release of DnaA from DnaA-boxes (right). (E) Comparison of the relationship between relative initiation mass and relative dnaA mRNA levels from experimental data (Figure 2F) and predictions of the extrusion model.

Figure 6—source data 1

Source data for Figure 6 showing changes in DNA replication initiation after dnaA shutdown, as well as the extrusion model prediction regarding the relationship between initiation mass and DnaA expression level.

https://cdn.elifesciences.org/articles/107214/elife-107214-fig6-data1-v1.xlsx
Figure 6—figure supplement 1
Predictions of the extrusion model.

(A) Dynamics of relative total cell mass and oriC number (upper panel), oriC concentration (middle panel), and free DnaA concentration (lower panel), predicted by a deterministic version of the extrusion model, without considering cell division. (B) Simulations of DnaA shutdown. DnaA shutdown was simulated by changing the dnaA expression level αA to 0 (upper panel). During DnaA shutdown, dynamics of relative oriC concentration (middle panel) and free DnaA concentration (lower panel) predicted by the titration model and extrusion model were plotted and compared. (C) Initiation adder phenomenon predicted by the extrusion model. A stochastic version of the extrusion model was simulated. The next initiation mass (upper panel), added mass between successive initiations (middle panel), and added time between successive initiations (lower panel) were plotted against the initiation mass in previous initiation, both normalized to their averages (blue dots, n=820). Mean values were calculated in bins of 0.05 relative initiation mass (red dotted line).

Figure 7 with 2 supplements
Titration of hns expression modulates DnaA activity and replication initiation.

(A) Genetic circuit of the hns-titratable strain. Expression of hns is controlled by a Ptet-tetR negative feedback loop integrated at the attB site, with the native hns coding sequence replaced by a kanamycin resistance gene. The plasmid containing Psyn66-mcherry and Pcon-gfp expression cassettes was used to assess DnaA activity. DnaA activity (B) and initiation mass (C) were characterized in M6 medium with varying hns expression levels during steady-state cultivation. (D) mRNA levels of hns (green circles) and dnaA (blue squares) relative to wild-type levels, along with DnaA activity (orange rhombus), were measured during hns shift-up. hns shift-up was induced by the addition of 50 ng∙ml–1 aTc at time 0 (dashed line), followed by steady-state cultivation in M6 medium without aTc. (E) Dynamics of population-averaged oriC number (blue rhombus, left axis) and cellular mass (gray rhombus, right axis) during hns shift-up. Data represent mean ± SD from 3 biological replicates (B–E). (F) Cell cycle-dependent DnaA activity oscillations in hns-titratable cells cultivated in M1 and M6 media under varying aTc concentrations. Relative hns mRNA levels are indicated for each condition. More than 8000 cells were analyzed for each condition, with at least 150 cells per bin; error bars show the mean ± SEM. (G) Correlation between the volume at maximal DnaA activity (V) and the volume at replication initiation (Vi) for hns-titratable cells grown in M1 (green down-pointing triangle) and M6 (red up-pointing triangle) media with varying hns expression levels. Data for dnaA-titratable cells (gray circles) and wild-type dnaA-autoregulated cells (Figure 5C) are included for comparison.

Figure 7—source data 1

Source data for Figure 7 showing the effect of hns expression level on DnaA activity and the timing of DNA replication initiation.

https://cdn.elifesciences.org/articles/107214/elife-107214-fig7-data1-v1.xlsx
Figure 7—figure supplement 1
H-NS promotes the release of DnaA from the datA sequence.

Competitive binding between H-NS and DnaA to datA fragments. H-NS and DnaA formed distinct complexes with datA, resulting in H-NS:datA (lane 2) and DnaA:datA (lane 3) complexes. Addition of H-NS to preincubated DnaA:datA complex resulted in coexistence of both DnaA:datA and H-NS:datA complexes (lane 4).

Figure 7—figure supplement 2
Basic phenotypic characterization of hns-titratable cells harboring a DnaA activity reporting plasmid.

(A) Relative hns mRNA levels were measured in steady-state growing cells in rich defined medium supplemented with glycerol at various aTc concentrations. Growth rate (B), population-averaged cellular mass m¯ (C), and cellular oriC number o¯ (D) were characterized as a function of hns mRNA levels for these steady-state cultures. Data represent mean ± SD from 3 biological replicates. Relative DnaA activity (represented by free DnaA concentration) (E) and initiation mass (F) as a function of varying extruder concentration as predicted by the extrusion model.

Appendix 1—figure 1
Predictions of the titration-switch model and titration-switch-extrusion model.

(A) Comparison of the titration-switch model predictions and experimental data for the relation between relative initiation mass and dnaA mRNA levels. The relative initiation mass was calculated as mass/oriC averaged over more than 100 cycles after steady DNA replication initiation was established, while the relative dnaA mRNA was achieved by setting various dnaA expression rates αA. Dynamics of total oriC number during DnaA shutdown predicted by titration-switch model (B) and titration-switch-extrusion model (C), normalized to the value at DnaA shutdown (dash line).

Author response image 1

Tables

Appendix 1—table 1
Parameters used in models.
ParameterDescriptionValuesSource
Titration model and extrusion model
λBiomass growth rate1.54h1This study (if not specifically defined)
αADnaA synthesis rate300h1μm3Fitted in this study
[Afc]Threshold of DnaA concentration10μm3Fitted in this study
αHExtruder synthesis rate180h1μm3Fitted in this study
ηRelative noise level of λ and αA in stochastic model0.1Fitted in this study
Switch model
[D]TConcentration of total DnaA protein400μm3Berger and Wolde, 2022;
LDDR model
αlActivation rate of DnaA-ATP by lipid750h1
αd1Activation rate of DnaA-ATP by the DARS1 site100h1
αd2Activation rate of DnaA-ATP by the DARS2 site643h1
βdatADeactivation rate of DnaA-ATP by data site600h1
βridaDeactivation rate of DnaA-ATP by RIDA system500h1
KDDissociation constant of DnaA activation and deactivation50μm3
KDPDissociation constant of DnaA promoter300μm3
fCThreshold of DnaA-ATP fraction for DNA replication initiation0.75
Titration switch model and Titration-switch-extrusion model
KDPDissociation constant of DnaA promoter400μm3Berger and Wolde, 2022; SI table switch-titration model
nCooperativity of dnaA expression5
αHExtruder synthesis rate550h1μm3Fitted in this study
[AATPfc]Threshold of DnaA-ATP concentration for DNA replication initiation200μm3Fitted in this study
Appendix 2—table 1
Strains used in this study.
StrainRelevant genetic marker(s) or featuresSource or reference
MG1655E. coli K12(AMB1655)Liu et al., 2011
CL1MG1655 ΔcheZ, ΔlacLiu et al., 2011
MGCL1MG1655 ΔlacThis study
RdnaA1MG1655 PdnaA-dnaA::PkanR-kanR yidA::(bla:Ptet-dnaA)::yidX intS::Ptet-tetRThis study
RdnaA2RdnaA1 ΔlacThis study
RseqA1MG1655 seqA::kan attB::(bla:Ptet-tetR-seqA)This study
Rhns1MG1655 hns::kan attB::(bla:Ptet-tetR-hns)This study
Rhns2Rhns1 ΔlacThis study
CRidnaA1MG1655 asnA::(PJ23119-sgRNAdnaA:PJ23100-tetR:Ptet -dUn1Cas12f1)::viaAThis study
Appendix 2—table 2
Plasmids used in this study.
PlasmidRelevant genotypeSource or reference
pSIM5Cmr, repA101(Ts) ori, λRedZheng et al., 2016
plkmlAmpr, pUC ori, loxp-kan-loxpZheng et al., 2016
pMD19-tetRAmpr, pUC ori, bla:Ptet-tetRZheng et al., 2016
pMD19-hupA-mcherryAmpr, pUC ori, bla:Ptet-tetR-hupA-mcherryThis study
pMD19-RhnsAmpr, pUC ori, bla:Ptet-tetR-hnsThis study
pMD19-RseqAAmpr, pUC ori, bla:Ptet-tetR-seqAThis study
pMD19-RdnaAAmpr, pUC ori, bla:Ptet-tetR-dnaAThis study
p15A-RdnaAKanr, p15A ori, Ptet-tetR-dnaAThis study
pTargetFaadAr, pMB1 ori, sgRNAJiang et al., 2015
pEcCasKanr, pSC101 ori, sacB ParaB-λRed Pcas-cas9Li et al., 2021
pZA31-Ptet-M2-GFPCmr, p15A ori, Ptet-gfpLiu et al., 2019
CmPcasCmr, pSC101 ori, sacB ParaB-λRed Pcas-cas9This study
CPP00458aadAr, pSC101 ori, PJ23119-sgRNA-T-PJ23100-tetR-T-Ptet-dUn1Cas12f1Gift from Xiongfei Fu lab
P_CRidnaA1aadAr, pSC101 ori, PJ23119-sgRNAdnaA-T-PJ23100-tetR-T-Ptet-dUn1Cas12f1This study
pPTCmr, pSC101 ori, BsaI-lacZa-BasI-riboJ-sfgfpZong et al., 2017
pPT-RFPCmr, pSC101 ori, BsaI-lacZa-BasI-riboJ-mcherryThis study
pPT-lacZCmr, pSC101 ori, BsaI-lacZa-BasI-riboJ-lacZThis study
Psyn66-GFPCmr, pSC101 ori, Psyn66-riboJ-sfgfpThis study
Pcon-GFPCmr, pSC101 ori, Pcon-riboJ-sfgfpThis study
Psyn66-RFPCmr, pSC101 ori, Psyn66-riboJ-mcherryThis study
Pnative-GFPCmr, pSC101 ori, Pnative-riboJ-sfgfpThis study
Psyn66-lacZCmr, pSC101 ori, Psyn66-riboJ-lacZThis study
Pcon-lacZCmr, pSC101 ori, Pcon-riboJ-lacZThis study
Psny66-Pcon-FPsCmr, pSC101 ori, Pcon-riboJ-sfGFP, Psyn66-riboJ-mcherryThis study
pET-28a-DnaAKanr, pUC ori f1 ori, PlacI-lacI, PT7/lacO-dnaA-6*hisThis study
pET-28a-H-NSKanr, pUC ori f1 ori, PlacI-lacI, PT7/lacO-hns-6*hisThis study
Appendix 2—table 3
Primer pairs for synthetic reporter.
PrimersSequenceUse
DP420cctggtagatagattgacaagagttatccacagtaggatactgagcacaPsyn1
DP421agcttgtgctcagtatcctactgtggataactcttgtcaatctatctac
DP422cctggtagatagattgacacttgttatacacagggcgatactgagcacaPsyn2
DP423agcttgtgctcagtatcgccctgtgtataacaagtgtcaatctatctac
DP424cctggtagatagattgacaatacttttccacaggtagatactgagcacaPsyn3
DP425agcttgtgctcagtatctacctgtggaaaagtattgtcaatctatctac
DP426cctggtagatagattgacaccgatcattcacagttagatactgagcacaPsyn4
DP427agcttgtgctcagtatctaactgtgaatgatcggtgtcaatctatctac
DP428cctggtagatagattgacacttgtgtggataagggcgatactgagcacaPsyn5
DP429agcttgtgctcagtatcgcccttatccacacaagtgtcaatctatctac
DP430cctggtagatagattgacattatccacatagttcccgatactgagcacaPsyn6
DP431agcttgtgctcagtatcgggaactatgtggataatgtcaatctatctac
DP432cctggtagatagattgacacccctgcgatttttcccgatactgagcacaPsyn7
DP433agcttgtgctcagtatcgggaaaaatcgcaggggtgtcaatctatctac
DP434cctgttatccacattgacacccctgcgatagttcccgatactgagcacaPsyn8
DP435agcttgtgctcagtatcgggaactatcgcaggggtgtcaatgtggataa
DP436cctggtagatagattgacacccctgcgatagttcccgatactttatccacPsyn9
DP437agctgtggataaagtatcgggaactatcgcaggggtgtcaatctatctac
DP438cctgacagagttatccacagtagatagattgacaccgatcattcacagttagatactgagcacaPsyn10
DP439agcttgtgctcagtatctaactgtgaatgatcggtgtcaatctatctactgtggataactctgt
DP440cctggaggggttatacacaactcaaagattgacaccgatcattcacagttagatactgagcacaPsyn11
DP441agcttgtgctcagtatctaactgtgaatgatcggtgtcaatctttgagttgtgtataacccctc
DP442cctgccatactgtggaaaaggtagaagattgacaccgatcattcacagttagatactgagcacaPsyn12
DP443agcttgtgctcagtatctaactgtgaatgatcggtgtcaatcttctaccttttccacagtatgg
DP444cctgttatccacattgacacccctgcgatagttcccgatactttatccacPsyn13
DP445agctgtggataaagtatcgggaactatcgcaggggtgtcaatgtggataa
DP446cctgttatccacattgacacccctgcgatttttcccgatactgagcacaPsyn14
DP447agcttgtgctcagtatcgggaaaaatcgcaggggtgtcaatgtggataa
DP448cctgttatccacattgacattatccacatagttcccgatactgagcacaPsyn15
DP449agcttgtgctcagtatcgggaactatgtggataatgtcaatgtggataa
DP450cctggtagatagattgacattatccacatagttcccgatactttatccacPsyn16
DP451agctgtggataaagtatcgggaactatgtggataatgtcaatctatctac
DP452cctggtagatagattgacacccctgcgatttttcccgatactttatccacPsyn17
DP453agctgtggataaagtatcgggaaaaatcgcaggggtgtcaatctatctac
DP454cctggatagattgacatgtggataagtgtggatgatactgagcacaPsyn18
DP455agcttgtgctcagtatcatccacacttatccacatgtcaatctatc
DP456cctggatagattgacattatccacagttttcccgatactgagcacaPsyn19
DP457agcttgtgctcagtatcgggaaaactgtggataatgtcaatctatc
DP458cctggatagattgacattatccacagctttccagatactgagcacaPsyn20
DP459agcttgtgctcagtatctggaaagctgtggataatgtcaatctatc
DP460cctgttatccacattgacacccctgcgatagttcccgatactgtggataaPsyn21
DP461agctttatccacagtatcgggaactatcgcaggggtgtcaatgtggataa
DP462cctgtgtggataattgacacccctgcgatagttcccgatactttatccacPsyn22
DP463agctgtggataaagtatcgggaactatcgcaggggtgtcaattatccaca
DP464cctgtgtggataattgacacccctgcgatagttcccgatactgtggataaPsyn23
DP465agctttatccacagtatcgggaactatcgcaggggtgtcaattatccaca
DP466cctgtgtggataattgacacccctgcgatttttcccgatactgagcacaPsyn24
DP467agcttgtgctcagtatcgggaaaaatcgcaggggtgtcaattatccaca
DP468cctgttatccacattgacatgtggataatagttcccgatactgagcacaPsyn25
DP469agcttgtgctcagtatcgggaactattatccacatgtcaatgtggataa
DP470cctgtgtggataattgacattatccacatagttcccgatactgagcacaPsyn26
DP471agcttgtgctcagtatcgggaactatgtggataatgtcaattatccaca
DP472cctgtgtggataattgacatgtggataatagttcccgatactgagcacaPsyn27
DP473agcttgtgctcagtatcgggaactattatccacatgtcaattatccaca
DP474cctggtagatagattgacattatccacatagttcccgatactgtggataaPsyn28
DP475agctttatccacagtatcgggaactatgtggataatgtcaatctatctac
DP476cctggtagatagattgacatgtggataatagttcccgatactttatccacPsyn29
DP477agctgtggataaagtatcgggaactattatccacatgtcaatctatctac
DP478cctggtagatagattgacatgtggataatagttcccgatactgtggataaPsyn30
DP479agctttatccacagtatcgggaactattatccacatgtcaatctatctac
DP480cctggtagatagattgacacccctgcgatttttcccgatactgtggataaPsyn31
DP481agctttatccacagtatcgggaaaaatcgcaggggtgtcaatctatctac
DP482cctggtagatagattgacatgtggataatttttcccgatactgagcacaPsyn32
DP483agcttgtgctcagtatcgggaaaaattatccacatgtcaatctatctac
DP484cctgtgtggataattgacattatccacatagttcccgatactttatccacPsyn33
DP485agctgtggataaagtatcgggaactatgtggataatgtcaattatccaca
DP486cctgttatccacattgacattatccacatagttcccgatactgtggataaPsyn34
DP487agctttatccacagtatcgggaactatgtggataatgtcaatgtggataa
DP488cctgtgtggataattgacattatccacatagttcccgatactgtggataaPsyn35
DP489agctttatccacagtatcgggaactatgtggataatgtcaattatccaca
DP490cctgttatccacattgacatgtggataatagttcccgatactgtggataaPsyn36
DP491agctttatccacagtatcgggaactattatccacatgtcaatgtggataa
DP492cctgtgtggataattgacatgtggataatagttcccgatactttatccacPsyn37
DP493agctgtggataaagtatcgggaactattatccacatgtcaattatccaca
DP494cctgtgtggataattgacatgtggataatagttcccgatactgtggataaPsyn38
DP495agctttatccacagtatcgggaactattatccacatgtcaattatccaca
DP496cctgttatccacattgacattatccacatagttcccgatactttatccacPsyn39
DP497agctgtggataaagtatcgggaactatgtggataatgtcaatgtggataa
DP498cctgttatccacattgacacccctgcgatttttcccgatactttatccacPsyn40
DP499agctgtggataaagtatcgggaaaaatcgcaggggtgtcaatgtggataa
DP500cctgttatccacattgacattatccacagttttcccgatactgagcacaPsyn41
DP501agcttgtgctcagtatcgggaaaactgtggataatgtcaatgtggataa
DP502cctgttatccacattgacacccctttatccacacccgatactttatccacPsyn42
DP503agctgtggataaagtatcgggtgtggataaaggggtgtcaatgtggataa
DP504cctgttatccacattgacacccctgcgttatccacagatactttatccacPsyn43
DP505agctgtggataaagtatctgtggataacgcaggggtgtcaatgtggataa
DP506cctgttatccacattgacatgtggataatagttcccgatactttatccacPsyn44
DP507agctgtggataaagtatcgggaactattatccacatgtcaatgtggataa
DP508cctgttatccacattgacaccccttgtggataacccgatactttatccacPsyn45
DP509agctgtggataaagtatcgggttatccacaaggggtgtcaatgtggataa
DP510cctgttatccacattgacacccctgcgtgtggataagatactttatccacPsyn46
DP511agctgtggataaagtatcttatccacacgcaggggtgtcaatgtggataa
DP512cctgttatccacattgacattttcccgatagttcccgatactttatccacPsyn47
DP513agctgtggataaagtatcgggaactatcgggaaaatgtcaatgtggataa
DP514cctgttatccacattgacatcgggaaaatagttcccgatactttatccacPsyn48
DP515agctgtggataaagtatcgggaactattttcccgatgtcaatgtggataa
DP516cctgttatccacattgacacccctttttcccgacccgatactttatccacPsyn49
DP517agctgtggataaagtatcgggtcgggaaaaaggggtgtcaatgtggataa
DP518cctgttatccacattgacaccccttcgggaaaacccgatactttatccacPsyn50
DP519agctgtggataaagtatcgggttttcccgaaggggtgtcaatgtggataa
DP520cctgttatccacattgacacccctgcgtcgggaaaagatactttatccacPsyn51
DP521agctgtggataaagtatcttttcccgacgcaggggtgtcaatgtggataa
DP522cctgtgtggataagatagattgacatgtggataagtgtggatgatactgagcacaPsyn52
DP523agcttgtgctcagtatcatccacacttatccacatgtcaatctatcttatccaca
DP524cctgttatccacagatagattgacattatccacagctttccagatactgagcacaPsyn53
DP525agcttgtgctcagtatctggaaagctgtggataatgtcaatctatctgtggataa
DP526cctgttatccacagatagattgacattatccacagttttcccgatactgagcacaPsyn54
DP527agcttgtgctcagtatcgggaaaactgtggataatgtcaatctatctgtggataa
DP528cctgttatccacagatagattgacatgtggataagtgtggatgatactgagcacaPsyn55
DP529agcttgtgctcagtatcatccacacttatccacatgtcaatctatctgtggataa
DP530cctgtgtggataattgacatgtggataagtgtggatgatactgagcacaPsyn56
DP531agcttgtgctcagtatcatccacacttatccacatgtcaattatccaca
DP532cctgttgacattatccacagttttcccgatactttatccacPsyn57
DP533agctgtggataaagtatcgggaaaactgtggataatgtcaa
DP534cctgttatccacattgacatgtggataatttttcccgatactttatccacPsyn58
DP535agctgtggataaagtatcgggaaaaattatccacatgtcaatgtggataa
DP536cctgttatccacattgacattatccacatttttcccgatactgtggataaPsyn59
DP537agctttatccacagtatcgggaaaaatgtggataatgtcaatgtggataa
DP538cctgtgtggataattgacattatccacatttttcccgatactttatccacPsyn60
DP539agctgtggataaagtatcgggaaaaatgtggataatgtcaattatccaca
DP540cctgtgtggataattgacattatccacatttttcccgatactgtggataaPsyn61
DP541agctttatccacagtatcgggaaaaatgtggataatgtcaattatccaca
DP542cctgtgtggataattgacatgtggataatttttcccgatactttatccacPsyn62
DP543agctgtggataaagtatcgggaaaaattatccacatgtcaattatccaca
DP544cctgttatccacattgacatgtggataatttttcccgatactgtggataaPsyn63
DP545agctttatccacagtatcgggaaaaattatccacatgtcaatgtggataa
DP546cctgtgtggataattgacatgtggataatttttcccgatactgtggataaPsyn64
DP547agctttatccacagtatcgggaaaaattatccacatgtcaattatccaca
DP548cctgtgtggataattgacatgtggataagtgtggatgatacttgtggataPsyn65
DP549agcttatccacaagtatcatccacacttatccacatgtcaattatccaca
DP550cctgttatccacattgacattatccacagttttcccgatactttatccacPsyn66
DP551agctgtggataaagtatcgggaaaactgtggataatgtcaatgtggataa
DP552cctgtgtggataattgacatgtggataagtgtggatgatactttatccacPsyn67
DP553agctgtggataaagtatcatccacacttatccacatgtcaattatccaca
DP554cctgttgacacccctgcgatagttcccgatactgagcacaPcon
DP555agcttgtgctcagtatcgggaactatcgcaggggtgtcaa
DP556cctgttatccacacccgggttatccacagttttcccgagcccttatccacPneg
DP557agctgtggataagggctcgggaaaactgtggataacccgggtgtggataa
Appendix 2—table 4
Oligonucleotides for the construction of strains and plasmids and qPCR.
PrimersSequenceUse
DJP001gaaagaggagaaatactagatgaccatgattacggattcacAmplifying lacZ gene from MG1655 genome
DJP002ttgatgcctggcttatcattatttttgacaccagaccaact
DJP003gaaagaggagaaatactagatggtttccaagggcgaggAmplifying mCherry gene from pMD19-hupA-mcherry
DJP004ttgatgcctggcttatcattatttgtagagctcatccatgc
DJP005ccacaaggtctccagctgatcaagatcctgcaaaacgatAmplifying native dnaA promoter (Pnative) from MG1655 genome
DJP006ccacatggtctcccctgccaatttttgtctatggtcat
DJP007ctgttttcttgcaagattactagtccatccagtgctcatttgtacagttcatccataccAmplifying Pcon-gfp cassette from Pcon-GFP plasmid
DJP008ccttagtgactcctgcagtcctgggtgttgacacccctgcgat
DJP009cgccatatgtcactttcgctttggcaAmplify dnaA gene from MG1655 genome for the construction of pET-28a-DnaA plasmid
DJP010cgcaagcttttacgatgacaatgttctga
DJP011cgccatatgagcgaagcacttaaaatAmplify hns gene from MG1655 genome for the construction of pET-28a-H-NS plasmid
DJP012cgcaagcttttattgcttgatcaggaaatc
DJP013cgatctgcagaaagaggagaaatactaggtgtcactttcgctttggcAmplifying dnaA gene from MG1655 genome
DJP014gtgagccggatccttacgatgacaatgttctgatt
DJP015atgcctgcagtcacacaggaaacctactagatgaaaacgattgaagttgatgatgAmplifying seqA gene from MG1655 genome
DJP016gtcaggatccttagatagttccgcaaaccttct
DJP017cagtaagcttaaagaggagaaatactagatgagcgaagcacttaaaattcAmplifying hns gene from MG1655 genome
DJP018gtacggatccttattgcttgatcaggaaatcgtcg
DJP019tggatcgcgaagaaaggcAmplifying T3-Ptet-tetR-dnaA cassette from pMD19-RdnaA plasmid
DJP020tcgatatcaaccatggctgcggcaaaatcgctcgagt
DJP021cgttttatttgatgggtcgacctgcagggaaagccacgtAmplifying kanr gene from the plasmid pEcCas
DJP022ttcttcgcgatccatgctagcagcaaccaattaaccaattc
DJP023gcagccatggttgatatcgagctcgcttggaAmplifying p15A-T1 fragment from the PZA31-Ptet-M2-GFP plasmid
DJP024cacatgaagtcgacccatcaaataaaacgaaaggctc
DJP025tcaacccactgcagcaaccaattaaccaattctgattacgccccgccctgccaAmplifying Cmr gene from pZA31-Ptet-M2-GFP plasmid for the construction of CmPcas
DJP026tgtctgcttacataaacagtaatacaaggggtgttatggagaaaaaaatcactgg
DJP027ttaaaggtattaaaaacaactttttgtctttttaccttcccgtttcgctccaggaaacagctatgaccatgAmplifying the T0-Amp-T1-Ptet-tetR-hns or T0-Amp-T1-Ptet -tetR-seqA cassette, and then assembling to attB locus via λRed recombination system
DJP028cacaggttgctccgggctatgaaatagaaaaatgaatccgttgaagcctgtgtaaaacgacggccagt
DJP029tctattattacctcaacaaaccaccccaatataagtttgagattactacaatgattgaacaagatggattgcacAmplifying kanr gene from plkml plasmid for the deletion of native hns gene
DJP030aaaaaatcccgccgctggcgggattttaagcaagtgcaatctacaaaagatcagaagaactcgtcaagaagg
DJP031ggcctgcacgattgtggattgccattgctttgtcctttgtctgcaacgttctagtgaacctcttcgagggAmplifying kanr gene from plkml plasmid for the deletion of native seqA gene
DJP032catatactcctggcgacttgtattcagctaagacactgcactggattaaggccgatcatattcaataaccc
DJP033gagtcatgcacagattcgtaT0-Ptet-tetR-T3 cassette was amplified from plasmid pMD19-tetR with primers DJP035/DJP036, the intS upstream and downstream sequences were amplified from MG1655 genome with primers DJP033/DJP034, and DJP037/DJP038, respectively. Three fragments were ligated via overlap PCR with primers DJP033/DJP038.
DJP034gatctgaagcgaaccatga
DJP035tcatggttcgcttcagatcaggttgtgtgttcctcttcattc
DJP036cctcatagccgatttgtttgaaggaaacagctatgaccatga
DJP037caaacaaatcggctatgagg
DJP038agtgtataagggtgttcagc
DJP039gtacgttagatcgtagacgcttggcgataaagaacgccacttcgcccggccgtgagcatttaggatccggctcaccttcaAmplifying T3-kanr-T1 cassette from p15A-RdnaA plasmid to replace the native Pnative-dnaA on the genome
DJP040gatcgattaagccaatttttgtctatggtcattaaattttccaatatgcggcgtaaatctagggcggcggatttg
DJP041ttaggcaccccaggctttacThe dnaA-T3 and T0-Amp-T1-Ptet fragments were amplified from the pMD19-RdnaA plasmid using primers DJP041/DJP042 and DJP043/DJP044, respectively. These two fragments were then combined via overlap PCR using primers DJP045/DJP046 to generate a homologous recombination fragment for inserting T0-Amp -T1-Ptet-dnaA-T3 between the yidA and yidX genes.
DJP042cagtgatagagatactgagcacataagcttaaagaggagaaagactaggtgtcactttcgc
DJP043gtgctcagtatctctatcactgatagggatgtcaatctctatcactgatagggagggactcgag
DJP044aaaacgacggccagtgaa
DJP045gatggcgtggcgtttgctattgagaagtatgtgctgaattaatctgtgggcggtcatcttcggctactgtct
DJP046accgctgcaatttctggttgtatatgcagtaaaccaataatcagtaagcgcaggaaacagctatgaccatg
DJP047saacttcgagtggagtccgccgtgInserting to the CPP00458 backbone to generate P_CRidnaA1 plasmid to shut down dnaA expression
DJP048cgagcacggcggactccactcgaa
DJP049aaacgatgaagaccgtctttctccAmplifying homologous sequences to asnA gene
DJP050ttcttagacgtcaggtggcattattacagcagagaagggacg
DJP051tgccacctgacgtctaagaaAmplifying PJ23119-sgRNAdnaA:PJ23100-tetR:Ptet-dUn1Cas12f1 cassette from P_CRidnaA1 plasmid
DJP052tctagattactgcgcagatggcgacgataatgacagcagccaactcagcttc
DJP053gccatctgcgcagtaatctagatcgcatcccggtatcaaagcAmplifying homologous sequences to viaA gene
DJP054atgaacagtgtgcgaaagcg
DJP055ccacaaggcatcgaacaagcAssembling the upper three fragments through overlap PCR
DJP056gtggaacccggtactggaag
DJP057cttctttggtgctgtactcaRT-qPCR primer for rpoA
DJP058tggttgatatcgagcaagtg
DJP059cccgattgcaggatgagttRT-qPCR primer for dnaA
DJP060tacccaatcgaggacaaaac
DJP061cgttatccggaccatatgaaRT-qPCR primer for gfp
DJP062cttcaaatttcacttccgca
DJP063aagttaaactgcgtggtactRT-qPCR primer for mcherry
DJP064acaggtttcttggctttgta
DJP065tatgttgaaattttccgccgRT-qPCR primer for seqA
DJP066attcatccgaaagcagaagt
DJP067gtattgacccgaacgaactgRT-qPCR primer for hns
DJP068agtccaggttttagtttcgc
Appendix 2—table 5
43 3'-TAMRA probes spanning the whole coding sequence of the dnaA gene.
gccaaagcgaaagtgacacgagaacgataggtcggttctgcttcctgagatcgttctttacacgaagtcgatggtgatcg
tgcaatcgggcaagacactgacgtgtgtttgacgtttacgggcgttgaaggtgtggaaaatgaccagtttttcctgcaat
aattctgtggctggtaactccgccagttggttagatttacatctgttgattaccttccagccgtcttctgaatattgtcg
caatgggcgtatccacatacggaacaacgggttataggcaatagcgatccgaggtgagaacgcgactttgatcttgtagt
agcgtgttatcgctcagttcatgcagcaggtgagttttaccaacgccgttgatctctttcatcgacgcttggaaaggaga
cccaatcgaggacaaaacggtaaaccactttggcattcggcaaccgaagcgggatttcaatgtggttagtcagctctttc
ttattaaggtacttgtcccgtgaacaaagcgctcggagtgtttttcatcaggatcgccaccaccaaacgcatcgccaatc
gcagaaactggttagcagtctttgcagggctttaaccatgacgaatgtcgttttcgtcggttacggcaggcatgaagcac
cgacttcaaaacgcagctgtttaaactcttcgatcgcgttggcgataaagaacgccacttctcttcacgcaactgctcga
gtagaaggcgcagcacgttgatctacggaacggtagtagcgtacgttagatcgtagacgcaatcttctttgatatcgtgg
ggacgttatcccaacctgaggaatatcgtcgatcagcagtggtaaagttggcattggcaa

Additional files

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dengjin Li
  2. Hai Zheng
  3. Yang Bai
  4. Zheng Zhang
  5. Hao Cheng
  6. Xiongliang Huang
  7. Ting Wei
  8. Matthew Chang
  9. Arieh Zaritsky
  10. Terence Hwa
  11. Chenli Liu
(2025)
Extrusion-modulated DnaA activity oscillations coordinate DNA replication with biomass growth
eLife 14:RP107214.
https://doi.org/10.7554/eLife.107214.3