Extrusion-modulated DnaA activity oscillations coordinate DNA replication with biomass growth
Figures
Coordination of biomass growth and DNA replication through replication initiation and DnaA activity oscillations.
(A) Schematic representation of the discrepancy between biomass accumulation and DNA replication. While biomass grows exponentially, DNA synthesis progresses linearly, necessitating replication initiation events to maintain coordination. (B) Mechanistic model for biomass-DNA coordination in bacteria. A molecular sensor detects deviations between cell mass and DNA content, transmitting this information to regulatory controllers that compensate by either increasing DNA replication or restricting biomass accumulation. (C) Illustration of cyclic DnaA activity oscillations aligning with replication initiation to ensure precise cell cycle control.
Construction and characterization of the dnaA-titratable strain.
(A) Schematic of the dnaA-titratable strain. A dnaA gene under the control of the Ptet promoter was inserted near oriC and regulated by a Ptet-tetR feedback loop integrated at the intS locus, enabling fine-tuned expression control. The native dnaA gene was replaced with a kanamycin resistance cassette (kanr). (B–F) Characterization of dnaA-titratable cells (circle) and wild-type MG1655 cells (triangle) grown in rich defined medium with glycerol (M6) under varying aTc concentrations. Measured parameters include: (B) dnaA mRNA levels; (C) growth rate; (D) population-averaged cellular mass; (E) population-averaged oriC numbers; (F) initiation mass (red, left axis); and the initiation to division period (C+D) (blue, right axis). The dnaA mRNA levels were normalized to that in wild-type cells. Cellular mass was determined by OD₆₀₀ divided by cell number concentration. oriC copy numbers were measured using a run-out assay, and initiation mass was calculated as the ratio of cellular mass to oriC numbers. Data represent means ± SD (n = 5 biological replicates). (G) Relationship between relative initiation mass and relative dnaA mRNA levels, compared with predictions from the initiation titration model (blue line) and the switch model (purple line). The relative dnaA mRNA levels in experiments are compared to relative DnaA expression rate in models. Experimental data are overlaid for validation.
-
Figure 2—source data 1
Source data for Figure 2 showing the physiological characteristics and model predictions of the dnaA-titratable cells under different dnaA expression levels.
- https://cdn.elifesciences.org/articles/107214/elife-107214-fig2-data1-v1.xlsx
Development of a DnaA activity reporter system.
(A) Schematic of promoter design and screening. Sixty-seven synthetic promoters were constructed by inserting various DnaA-boxes around the promoter core to drive gfp expression in a dnaA-titratable strain, where dnaA expression was regulated by aTc concentration. After pre-cultivation, GFP fluorescence per OD₆₀₀ was measured using a microplate reader in cells grown under low (0.5 ng∙ml–1) or high (50 ng∙ml–1) aTc concentrations to determine repression fold-change. (B) Repression fold-change of synthetic promoters. Pcon (a promoter lacking DnaA-boxes) and Pnative (the endogenous dnaA promoter) served as negative and positive controls, shown in gray and yellow, respectively. (C) Response curves of three promoters to varying dnaA expression levels, with their promoter architectures shown on the right. Promoter activity was assessed by relative gfp mRNA levels, normalized to the lowest dnaA expression condition. Schematic (D) and response curves (E) of Psyn66 and Pnative responses to SeqA in the seqA-titratable strain. Promoter activity was quantified from gfp transcript levels in seqA-titratable cells containing the Psyn66-GFP plasmid, normalized to the lowest seqA expression level. All cells were grown in rich defined medium supplemented with glycerol across different aTc concentrations. Data represent mean ± SD from 3 biological replicates (B, C, E).
-
Figure 3—source data 1
Source data for Figure 3 showing the response characteristics of the synthetic promoter under different expression levels of DnaA and SeqA proteins.
- https://cdn.elifesciences.org/articles/107214/elife-107214-fig3-data1-v1.xlsx
Screening a library of synthetic promoters reveals potential candidates to report DnaA activity.
For each synthetic promoter, various combinations of DnaA-boxes were inserted near the promoter core, and their repression fold in response to elevated DnaA expression was measured in dnaA-titratable cells grown in 0.5 ng·ml–1 aTc compared to cells grown in 50 ng·ml–1 aTc, using a microplate reader. Error bars represent the standard deviation (SD) of three replicates.
DnaA activity oscillations decoupled from dnaA transcription fluctuations.
(A) Representative lacZ mRNA fluorescence in situ hybridization (FISH) images of MG1655 ∆lac cells transformed with lacZ expression plasmids driven by Psyn66 (DnaA-boxes around promoter core), Pcon (no DnaA-box around promoter core), or Pneg (mutated promoter core). Yellow outlines indicate cell boundaries identified from phase-contrast images. (B) Relative lacZ mRNA concentrations driven by Psyn66 (left) and Pcon (right) across different cell volumes. Relative concentrations were determined from volume-specific lacZ mRNA fluorescence intensities, normalized to the population average. Volume-binned data for Psyn66 ((Psyn66)) and Pcon ((Pcon)) are shown as open circles and were used to calculate . (C) Schematic of a strain with autoregulated dnaA transcription carrying a DnaA activity reporter plasmid. Cell cycle-dependent fluctuations in relative DnaA activity (D) and relative dnaA mRNA concentrations (E) in cells from panel C, grown in rich defined medium supplemented with glucose. Relative DnaA activity (), calculated from volume-binned data in panel B, was smoothed and plotted as a red curve (D). Relative dnaA mRNA concentrations were determined from volume-specific dnaA mRNA fluorescence intensities, normalized to the population average, with volume-binned data shown as open circles (E). Dashed lines indicate the cell volume at peak DnaA activity (D) and the minimum dnaA mRNA content (E). (F–H) Same as panels C–E, but for cells with aTc induced dnaA transcription, grown in rich defined medium supplemented with glycerol under 2 ng∙ml–1 aTc induction. More than 8000 cells were analyzed per growth condition, with at least 150 cells per bin; all error bars correspond to standard error of the mean (SEM).
-
Figure 4—source data 1
Source data for Figure 4 showing the changes in lacZ mRNA concentration driven by the reporter promoter with cell size, and the cell cycle-dependent variations in DnaA activity and dnaA mRNA concentration.
- https://cdn.elifesciences.org/articles/107214/elife-107214-fig4-data1-v1.xlsx
Tight correlation between DnaA activity oscillations and DNA replication initiation.
(A) Cell cycle-dependent DnaA activity oscillations in wild-type cells across various growth conditions. DnaA activity is represented by . Volume-binned DnaA activity (red circles) was smoothed and plotted as a red curve. The representative birth-to-division cell cycle, defined as the cell volume doubling interval containing the majority of cells, is shaded in gray. The vertical line indicates the cell volume at replication initiation (). (B) Cell cycle-dependent DnaA activity oscillations in dnaA-titratable cells grown in M6 medium with varying aTc concentrations. More than 8000 cells were analyzed per growth condition, with at least 150 cells per bin; error bars show the mean ± SEM. (C) Correlation between and in wild-type (squares) and dnaA-titratable (circles) cells. represents the cell volume at the peak of DnaA activity within the representative birth-to-division cell cycle. The black line indicates equivalence between and .
-
Figure 5—source data 1
Source data for Figure 5 showing DnaA activity oscillations and DNA replication initiation in wild-type cells cultivated under various growth media and in dnaA-titratable cells cultivated under various induction levels.
- https://cdn.elifesciences.org/articles/107214/elife-107214-fig5-data1-v1.xlsx
Determination of cell volume at replication initiation and representative birth-to-division cell cycle.
(A–B) Distribution of cellular oriC content (up) and cell volume (low) for cells shown in Figure 4C cultivated in various growth media with noted doubling time (A), and for cells shown in Figure 4F grown in M6 medium with noted aTc concentrations (B). Cellular oriC was determined using run-out experiments followed by flow cytometry, and cell volume was obtained from phase-contrast images from mRNA fluorescence in situ hybridization (FISH) experiments. (C) Calculation of the cell volume at replication initiation. Based on panels A and B, the population-averaged cellular oriC content () and cell volume () were determined, then the initiation volume can be deduced accordingly. Additionally, the oriC number at the initiation time () was calculated based on . Cell volume at the replication initiation was derived by definition. (D) Illustration of the determination of the representative birth-to-division cell cycle for DnaA activity oscillations. The cell volume distribution is analyzed to calculate the number of cells within each volume-doubling range. The range with the most cell counts is defined as the representative birth-to-division cycle, which is shaded in gray.
An extrusion model explains DnaA shutdown dynamics.
(A) Genetic circuit of the deactivated CRISPR-Cas system for dnaA transcription shutdown. dnaA gene is targeted by a constitutively expressed sgRNA, while dUn1Cas12f1 expression is inhibited by TetR repressor. These transcription units are separated by terminators. The cassette was integrated into the chromosome near the oriC locus. DnaA shutdown is induced by the addition of aTc. (B) Time course of relative dnaA mRNA levels (red line, left axis) and total oriC number (green line, right axis) following the addition of 50 ng∙ml–1 aTc at time 0 (dashed line). dnaA mRNA levels were normalized to wild-type levels, and oriC numbers were normalized to their initial values. Error bars indicate mean ± SD (n = 3 biologically independent experiments). (C) Predicted increases in total oriC number during dnaA transcription shutdown based on three models: the titration model, switch model, and extrusion model. Shutdown was simulated by setting dnaA transcription to zero at time 0 (dashed line). (D) Schematic of the extrusion model. The model introduces extruder(s) as additional regulators of biomass-DNA coordination, complementing the role of DnaA (left). Increased binding of the extruder to DNA promotes the release of DnaA from DnaA-boxes (right). (E) Comparison of the relationship between relative initiation mass and relative dnaA mRNA levels from experimental data (Figure 2F) and predictions of the extrusion model.
-
Figure 6—source data 1
Source data for Figure 6 showing changes in DNA replication initiation after dnaA shutdown, as well as the extrusion model prediction regarding the relationship between initiation mass and DnaA expression level.
- https://cdn.elifesciences.org/articles/107214/elife-107214-fig6-data1-v1.xlsx
Predictions of the extrusion model.
(A) Dynamics of relative total cell mass and oriC number (upper panel), oriC concentration (middle panel), and free DnaA concentration (lower panel), predicted by a deterministic version of the extrusion model, without considering cell division. (B) Simulations of DnaA shutdown. DnaA shutdown was simulated by changing the dnaA expression level to 0 (upper panel). During DnaA shutdown, dynamics of relative oriC concentration (middle panel) and free DnaA concentration (lower panel) predicted by the titration model and extrusion model were plotted and compared. (C) Initiation adder phenomenon predicted by the extrusion model. A stochastic version of the extrusion model was simulated. The next initiation mass (upper panel), added mass between successive initiations (middle panel), and added time between successive initiations (lower panel) were plotted against the initiation mass in previous initiation, both normalized to their averages (blue dots, n=820). Mean values were calculated in bins of 0.05 relative initiation mass (red dotted line).
Titration of hns expression modulates DnaA activity and replication initiation.
(A) Genetic circuit of the hns-titratable strain. Expression of hns is controlled by a Ptet-tetR negative feedback loop integrated at the attB site, with the native hns coding sequence replaced by a kanamycin resistance gene. The plasmid containing Psyn66-mcherry and Pcon-gfp expression cassettes was used to assess DnaA activity. DnaA activity (B) and initiation mass (C) were characterized in M6 medium with varying hns expression levels during steady-state cultivation. (D) mRNA levels of hns (green circles) and dnaA (blue squares) relative to wild-type levels, along with DnaA activity (orange rhombus), were measured during hns shift-up. hns shift-up was induced by the addition of 50 ng∙ml–1 aTc at time 0 (dashed line), followed by steady-state cultivation in M6 medium without aTc. (E) Dynamics of population-averaged oriC number (blue rhombus, left axis) and cellular mass (gray rhombus, right axis) during hns shift-up. Data represent mean ± SD from 3 biological replicates (B–E). (F) Cell cycle-dependent DnaA activity oscillations in hns-titratable cells cultivated in M1 and M6 media under varying aTc concentrations. Relative hns mRNA levels are indicated for each condition. More than 8000 cells were analyzed for each condition, with at least 150 cells per bin; error bars show the mean ± SEM. (G) Correlation between the volume at maximal DnaA activity () and the volume at replication initiation () for hns-titratable cells grown in M1 (green down-pointing triangle) and M6 (red up-pointing triangle) media with varying hns expression levels. Data for dnaA-titratable cells (gray circles) and wild-type dnaA-autoregulated cells (Figure 5C) are included for comparison.
-
Figure 7—source data 1
Source data for Figure 7 showing the effect of hns expression level on DnaA activity and the timing of DNA replication initiation.
- https://cdn.elifesciences.org/articles/107214/elife-107214-fig7-data1-v1.xlsx
H-NS promotes the release of DnaA from the datA sequence.
Competitive binding between H-NS and DnaA to datA fragments. H-NS and DnaA formed distinct complexes with datA, resulting in H-NS:datA (lane 2) and DnaA:datA (lane 3) complexes. Addition of H-NS to preincubated DnaA:datA complex resulted in coexistence of both DnaA:datA and H-NS:datA complexes (lane 4).
Basic phenotypic characterization of hns-titratable cells harboring a DnaA activity reporting plasmid.
(A) Relative hns mRNA levels were measured in steady-state growing cells in rich defined medium supplemented with glycerol at various aTc concentrations. Growth rate (B), population-averaged cellular mass (C), and cellular oriC number (D) were characterized as a function of hns mRNA levels for these steady-state cultures. Data represent mean ± SD from 3 biological replicates. Relative DnaA activity (represented by free DnaA concentration) (E) and initiation mass (F) as a function of varying extruder concentration as predicted by the extrusion model.
Predictions of the titration-switch model and titration-switch-extrusion model.
(A) Comparison of the titration-switch model predictions and experimental data for the relation between relative initiation mass and dnaA mRNA levels. The relative initiation mass was calculated as mass/oriC averaged over more than 100 cycles after steady DNA replication initiation was established, while the relative dnaA mRNA was achieved by setting various dnaA expression rates . Dynamics of total oriC number during DnaA shutdown predicted by titration-switch model (B) and titration-switch-extrusion model (C), normalized to the value at DnaA shutdown (dash line).
Tables
Parameters used in models.
| Parameter | Description | Values | Source |
|---|---|---|---|
| Titration model and extrusion model | |||
| Biomass growth rate | This study (if not specifically defined) | ||
| DnaA synthesis rate | Fitted in this study | ||
| Threshold of DnaA concentration | Fitted in this study | ||
| Extruder synthesis rate | Fitted in this study | ||
| Relative noise level of and in stochastic model | 0.1 | Fitted in this study | |
| Switch model | |||
| Concentration of total DnaA protein | Berger and Wolde, 2022; LDDR model | ||
| Activation rate of DnaA-ATP by lipid | |||
| Activation rate of DnaA-ATP by the DARS1 site | |||
| Activation rate of DnaA-ATP by the DARS2 site | |||
| Deactivation rate of DnaA-ATP by data site | |||
| Deactivation rate of DnaA-ATP by RIDA system | |||
| Dissociation constant of DnaA activation and deactivation | |||
| Dissociation constant of DnaA promoter | |||
| Threshold of DnaA-ATP fraction for DNA replication initiation | 0.75 | ||
| Titration switch model and Titration-switch-extrusion model | |||
| Dissociation constant of DnaA promoter | Berger and Wolde, 2022; SI table switch-titration model | ||
| Cooperativity of dnaA expression | 5 | ||
| Extruder synthesis rate | Fitted in this study | ||
| Threshold of DnaA-ATP concentration for DNA replication initiation | Fitted in this study | ||
Strains used in this study.
| Strain | Relevant genetic marker(s) or features | Source or reference |
|---|---|---|
| MG1655 | E. coli K12(AMB1655) | Liu et al., 2011 |
| CL1 | MG1655 ΔcheZ, Δlac | Liu et al., 2011 |
| MGCL1 | MG1655 Δlac | This study |
| RdnaA1 | MG1655 PdnaA-dnaA::PkanR-kanR yidA::(bla:Ptet-dnaA)::yidX intS::Ptet-tetR | This study |
| RdnaA2 | RdnaA1 Δlac | This study |
| RseqA1 | MG1655 seqA::kan attB::(bla:Ptet-tetR-seqA) | This study |
| Rhns1 | MG1655 hns::kan attB::(bla:Ptet-tetR-hns) | This study |
| Rhns2 | Rhns1 Δlac | This study |
| CRidnaA1 | MG1655 asnA::(PJ23119-sgRNAdnaA:PJ23100-tetR:Ptet -dUn1Cas12f1)::viaA | This study |
Plasmids used in this study.
| Plasmid | Relevant genotype | Source or reference |
|---|---|---|
| pSIM5 | Cmr, repA101(Ts) ori, λRed | Zheng et al., 2016 |
| plkml | Ampr, pUC ori, loxp-kan-loxp | Zheng et al., 2016 |
| pMD19-tetR | Ampr, pUC ori, bla:Ptet-tetR | Zheng et al., 2016 |
| pMD19-hupA-mcherry | Ampr, pUC ori, bla:Ptet-tetR-hupA-mcherry | This study |
| pMD19-Rhns | Ampr, pUC ori, bla:Ptet-tetR-hns | This study |
| pMD19-RseqA | Ampr, pUC ori, bla:Ptet-tetR-seqA | This study |
| pMD19-RdnaA | Ampr, pUC ori, bla:Ptet-tetR-dnaA | This study |
| p15A-RdnaA | Kanr, p15A ori, Ptet-tetR-dnaA | This study |
| pTargetF | aadAr, pMB1 ori, sgRNA | Jiang et al., 2015 |
| pEcCas | Kanr, pSC101 ori, sacB ParaB-λRed Pcas-cas9 | Li et al., 2021 |
| pZA31-Ptet-M2-GFP | Cmr, p15A ori, Ptet-gfp | Liu et al., 2019 |
| CmPcas | Cmr, pSC101 ori, sacB ParaB-λRed Pcas-cas9 | This study |
| CPP00458 | aadAr, pSC101 ori, PJ23119-sgRNA-T-PJ23100-tetR-T-Ptet-dUn1Cas12f1 | Gift from Xiongfei Fu lab |
| P_CRidnaA1 | aadAr, pSC101 ori, PJ23119-sgRNAdnaA-T-PJ23100-tetR-T-Ptet-dUn1Cas12f1 | This study |
| pPT | Cmr, pSC101 ori, BsaI-lacZa-BasI-riboJ-sfgfp | Zong et al., 2017 |
| pPT-RFP | Cmr, pSC101 ori, BsaI-lacZa-BasI-riboJ-mcherry | This study |
| pPT-lacZ | Cmr, pSC101 ori, BsaI-lacZa-BasI-riboJ-lacZ | This study |
| Psyn66-GFP | Cmr, pSC101 ori, Psyn66-riboJ-sfgfp | This study |
| Pcon-GFP | Cmr, pSC101 ori, Pcon-riboJ-sfgfp | This study |
| Psyn66-RFP | Cmr, pSC101 ori, Psyn66-riboJ-mcherry | This study |
| Pnative-GFP | Cmr, pSC101 ori, Pnative-riboJ-sfgfp | This study |
| Psyn66-lacZ | Cmr, pSC101 ori, Psyn66-riboJ-lacZ | This study |
| Pcon-lacZ | Cmr, pSC101 ori, Pcon-riboJ-lacZ | This study |
| Psny66-Pcon-FPs | Cmr, pSC101 ori, Pcon-riboJ-sfGFP, Psyn66-riboJ-mcherry | This study |
| pET-28a-DnaA | Kanr, pUC ori f1 ori, PlacI-lacI, PT7/lacO-dnaA-6*his | This study |
| pET-28a-H-NS | Kanr, pUC ori f1 ori, PlacI-lacI, PT7/lacO-hns-6*his | This study |
Primer pairs for synthetic reporter.
| Primers | Sequence | Use |
|---|---|---|
| DP420 | cctggtagatagattgacaagagttatccacagtaggatactgagcaca | Psyn1 |
| DP421 | agcttgtgctcagtatcctactgtggataactcttgtcaatctatctac | |
| DP422 | cctggtagatagattgacacttgttatacacagggcgatactgagcaca | Psyn2 |
| DP423 | agcttgtgctcagtatcgccctgtgtataacaagtgtcaatctatctac | |
| DP424 | cctggtagatagattgacaatacttttccacaggtagatactgagcaca | Psyn3 |
| DP425 | agcttgtgctcagtatctacctgtggaaaagtattgtcaatctatctac | |
| DP426 | cctggtagatagattgacaccgatcattcacagttagatactgagcaca | Psyn4 |
| DP427 | agcttgtgctcagtatctaactgtgaatgatcggtgtcaatctatctac | |
| DP428 | cctggtagatagattgacacttgtgtggataagggcgatactgagcaca | Psyn5 |
| DP429 | agcttgtgctcagtatcgcccttatccacacaagtgtcaatctatctac | |
| DP430 | cctggtagatagattgacattatccacatagttcccgatactgagcaca | Psyn6 |
| DP431 | agcttgtgctcagtatcgggaactatgtggataatgtcaatctatctac | |
| DP432 | cctggtagatagattgacacccctgcgatttttcccgatactgagcaca | Psyn7 |
| DP433 | agcttgtgctcagtatcgggaaaaatcgcaggggtgtcaatctatctac | |
| DP434 | cctgttatccacattgacacccctgcgatagttcccgatactgagcaca | Psyn8 |
| DP435 | agcttgtgctcagtatcgggaactatcgcaggggtgtcaatgtggataa | |
| DP436 | cctggtagatagattgacacccctgcgatagttcccgatactttatccac | Psyn9 |
| DP437 | agctgtggataaagtatcgggaactatcgcaggggtgtcaatctatctac | |
| DP438 | cctgacagagttatccacagtagatagattgacaccgatcattcacagttagatactgagcaca | Psyn10 |
| DP439 | agcttgtgctcagtatctaactgtgaatgatcggtgtcaatctatctactgtggataactctgt | |
| DP440 | cctggaggggttatacacaactcaaagattgacaccgatcattcacagttagatactgagcaca | Psyn11 |
| DP441 | agcttgtgctcagtatctaactgtgaatgatcggtgtcaatctttgagttgtgtataacccctc | |
| DP442 | cctgccatactgtggaaaaggtagaagattgacaccgatcattcacagttagatactgagcaca | Psyn12 |
| DP443 | agcttgtgctcagtatctaactgtgaatgatcggtgtcaatcttctaccttttccacagtatgg | |
| DP444 | cctgttatccacattgacacccctgcgatagttcccgatactttatccac | Psyn13 |
| DP445 | agctgtggataaagtatcgggaactatcgcaggggtgtcaatgtggataa | |
| DP446 | cctgttatccacattgacacccctgcgatttttcccgatactgagcaca | Psyn14 |
| DP447 | agcttgtgctcagtatcgggaaaaatcgcaggggtgtcaatgtggataa | |
| DP448 | cctgttatccacattgacattatccacatagttcccgatactgagcaca | Psyn15 |
| DP449 | agcttgtgctcagtatcgggaactatgtggataatgtcaatgtggataa | |
| DP450 | cctggtagatagattgacattatccacatagttcccgatactttatccac | Psyn16 |
| DP451 | agctgtggataaagtatcgggaactatgtggataatgtcaatctatctac | |
| DP452 | cctggtagatagattgacacccctgcgatttttcccgatactttatccac | Psyn17 |
| DP453 | agctgtggataaagtatcgggaaaaatcgcaggggtgtcaatctatctac | |
| DP454 | cctggatagattgacatgtggataagtgtggatgatactgagcaca | Psyn18 |
| DP455 | agcttgtgctcagtatcatccacacttatccacatgtcaatctatc | |
| DP456 | cctggatagattgacattatccacagttttcccgatactgagcaca | Psyn19 |
| DP457 | agcttgtgctcagtatcgggaaaactgtggataatgtcaatctatc | |
| DP458 | cctggatagattgacattatccacagctttccagatactgagcaca | Psyn20 |
| DP459 | agcttgtgctcagtatctggaaagctgtggataatgtcaatctatc | |
| DP460 | cctgttatccacattgacacccctgcgatagttcccgatactgtggataa | Psyn21 |
| DP461 | agctttatccacagtatcgggaactatcgcaggggtgtcaatgtggataa | |
| DP462 | cctgtgtggataattgacacccctgcgatagttcccgatactttatccac | Psyn22 |
| DP463 | agctgtggataaagtatcgggaactatcgcaggggtgtcaattatccaca | |
| DP464 | cctgtgtggataattgacacccctgcgatagttcccgatactgtggataa | Psyn23 |
| DP465 | agctttatccacagtatcgggaactatcgcaggggtgtcaattatccaca | |
| DP466 | cctgtgtggataattgacacccctgcgatttttcccgatactgagcaca | Psyn24 |
| DP467 | agcttgtgctcagtatcgggaaaaatcgcaggggtgtcaattatccaca | |
| DP468 | cctgttatccacattgacatgtggataatagttcccgatactgagcaca | Psyn25 |
| DP469 | agcttgtgctcagtatcgggaactattatccacatgtcaatgtggataa | |
| DP470 | cctgtgtggataattgacattatccacatagttcccgatactgagcaca | Psyn26 |
| DP471 | agcttgtgctcagtatcgggaactatgtggataatgtcaattatccaca | |
| DP472 | cctgtgtggataattgacatgtggataatagttcccgatactgagcaca | Psyn27 |
| DP473 | agcttgtgctcagtatcgggaactattatccacatgtcaattatccaca | |
| DP474 | cctggtagatagattgacattatccacatagttcccgatactgtggataa | Psyn28 |
| DP475 | agctttatccacagtatcgggaactatgtggataatgtcaatctatctac | |
| DP476 | cctggtagatagattgacatgtggataatagttcccgatactttatccac | Psyn29 |
| DP477 | agctgtggataaagtatcgggaactattatccacatgtcaatctatctac | |
| DP478 | cctggtagatagattgacatgtggataatagttcccgatactgtggataa | Psyn30 |
| DP479 | agctttatccacagtatcgggaactattatccacatgtcaatctatctac | |
| DP480 | cctggtagatagattgacacccctgcgatttttcccgatactgtggataa | Psyn31 |
| DP481 | agctttatccacagtatcgggaaaaatcgcaggggtgtcaatctatctac | |
| DP482 | cctggtagatagattgacatgtggataatttttcccgatactgagcaca | Psyn32 |
| DP483 | agcttgtgctcagtatcgggaaaaattatccacatgtcaatctatctac | |
| DP484 | cctgtgtggataattgacattatccacatagttcccgatactttatccac | Psyn33 |
| DP485 | agctgtggataaagtatcgggaactatgtggataatgtcaattatccaca | |
| DP486 | cctgttatccacattgacattatccacatagttcccgatactgtggataa | Psyn34 |
| DP487 | agctttatccacagtatcgggaactatgtggataatgtcaatgtggataa | |
| DP488 | cctgtgtggataattgacattatccacatagttcccgatactgtggataa | Psyn35 |
| DP489 | agctttatccacagtatcgggaactatgtggataatgtcaattatccaca | |
| DP490 | cctgttatccacattgacatgtggataatagttcccgatactgtggataa | Psyn36 |
| DP491 | agctttatccacagtatcgggaactattatccacatgtcaatgtggataa | |
| DP492 | cctgtgtggataattgacatgtggataatagttcccgatactttatccac | Psyn37 |
| DP493 | agctgtggataaagtatcgggaactattatccacatgtcaattatccaca | |
| DP494 | cctgtgtggataattgacatgtggataatagttcccgatactgtggataa | Psyn38 |
| DP495 | agctttatccacagtatcgggaactattatccacatgtcaattatccaca | |
| DP496 | cctgttatccacattgacattatccacatagttcccgatactttatccac | Psyn39 |
| DP497 | agctgtggataaagtatcgggaactatgtggataatgtcaatgtggataa | |
| DP498 | cctgttatccacattgacacccctgcgatttttcccgatactttatccac | Psyn40 |
| DP499 | agctgtggataaagtatcgggaaaaatcgcaggggtgtcaatgtggataa | |
| DP500 | cctgttatccacattgacattatccacagttttcccgatactgagcaca | Psyn41 |
| DP501 | agcttgtgctcagtatcgggaaaactgtggataatgtcaatgtggataa | |
| DP502 | cctgttatccacattgacacccctttatccacacccgatactttatccac | Psyn42 |
| DP503 | agctgtggataaagtatcgggtgtggataaaggggtgtcaatgtggataa | |
| DP504 | cctgttatccacattgacacccctgcgttatccacagatactttatccac | Psyn43 |
| DP505 | agctgtggataaagtatctgtggataacgcaggggtgtcaatgtggataa | |
| DP506 | cctgttatccacattgacatgtggataatagttcccgatactttatccac | Psyn44 |
| DP507 | agctgtggataaagtatcgggaactattatccacatgtcaatgtggataa | |
| DP508 | cctgttatccacattgacaccccttgtggataacccgatactttatccac | Psyn45 |
| DP509 | agctgtggataaagtatcgggttatccacaaggggtgtcaatgtggataa | |
| DP510 | cctgttatccacattgacacccctgcgtgtggataagatactttatccac | Psyn46 |
| DP511 | agctgtggataaagtatcttatccacacgcaggggtgtcaatgtggataa | |
| DP512 | cctgttatccacattgacattttcccgatagttcccgatactttatccac | Psyn47 |
| DP513 | agctgtggataaagtatcgggaactatcgggaaaatgtcaatgtggataa | |
| DP514 | cctgttatccacattgacatcgggaaaatagttcccgatactttatccac | Psyn48 |
| DP515 | agctgtggataaagtatcgggaactattttcccgatgtcaatgtggataa | |
| DP516 | cctgttatccacattgacacccctttttcccgacccgatactttatccac | Psyn49 |
| DP517 | agctgtggataaagtatcgggtcgggaaaaaggggtgtcaatgtggataa | |
| DP518 | cctgttatccacattgacaccccttcgggaaaacccgatactttatccac | Psyn50 |
| DP519 | agctgtggataaagtatcgggttttcccgaaggggtgtcaatgtggataa | |
| DP520 | cctgttatccacattgacacccctgcgtcgggaaaagatactttatccac | Psyn51 |
| DP521 | agctgtggataaagtatcttttcccgacgcaggggtgtcaatgtggataa | |
| DP522 | cctgtgtggataagatagattgacatgtggataagtgtggatgatactgagcaca | Psyn52 |
| DP523 | agcttgtgctcagtatcatccacacttatccacatgtcaatctatcttatccaca | |
| DP524 | cctgttatccacagatagattgacattatccacagctttccagatactgagcaca | Psyn53 |
| DP525 | agcttgtgctcagtatctggaaagctgtggataatgtcaatctatctgtggataa | |
| DP526 | cctgttatccacagatagattgacattatccacagttttcccgatactgagcaca | Psyn54 |
| DP527 | agcttgtgctcagtatcgggaaaactgtggataatgtcaatctatctgtggataa | |
| DP528 | cctgttatccacagatagattgacatgtggataagtgtggatgatactgagcaca | Psyn55 |
| DP529 | agcttgtgctcagtatcatccacacttatccacatgtcaatctatctgtggataa | |
| DP530 | cctgtgtggataattgacatgtggataagtgtggatgatactgagcaca | Psyn56 |
| DP531 | agcttgtgctcagtatcatccacacttatccacatgtcaattatccaca | |
| DP532 | cctgttgacattatccacagttttcccgatactttatccac | Psyn57 |
| DP533 | agctgtggataaagtatcgggaaaactgtggataatgtcaa | |
| DP534 | cctgttatccacattgacatgtggataatttttcccgatactttatccac | Psyn58 |
| DP535 | agctgtggataaagtatcgggaaaaattatccacatgtcaatgtggataa | |
| DP536 | cctgttatccacattgacattatccacatttttcccgatactgtggataa | Psyn59 |
| DP537 | agctttatccacagtatcgggaaaaatgtggataatgtcaatgtggataa | |
| DP538 | cctgtgtggataattgacattatccacatttttcccgatactttatccac | Psyn60 |
| DP539 | agctgtggataaagtatcgggaaaaatgtggataatgtcaattatccaca | |
| DP540 | cctgtgtggataattgacattatccacatttttcccgatactgtggataa | Psyn61 |
| DP541 | agctttatccacagtatcgggaaaaatgtggataatgtcaattatccaca | |
| DP542 | cctgtgtggataattgacatgtggataatttttcccgatactttatccac | Psyn62 |
| DP543 | agctgtggataaagtatcgggaaaaattatccacatgtcaattatccaca | |
| DP544 | cctgttatccacattgacatgtggataatttttcccgatactgtggataa | Psyn63 |
| DP545 | agctttatccacagtatcgggaaaaattatccacatgtcaatgtggataa | |
| DP546 | cctgtgtggataattgacatgtggataatttttcccgatactgtggataa | Psyn64 |
| DP547 | agctttatccacagtatcgggaaaaattatccacatgtcaattatccaca | |
| DP548 | cctgtgtggataattgacatgtggataagtgtggatgatacttgtggata | Psyn65 |
| DP549 | agcttatccacaagtatcatccacacttatccacatgtcaattatccaca | |
| DP550 | cctgttatccacattgacattatccacagttttcccgatactttatccac | Psyn66 |
| DP551 | agctgtggataaagtatcgggaaaactgtggataatgtcaatgtggataa | |
| DP552 | cctgtgtggataattgacatgtggataagtgtggatgatactttatccac | Psyn67 |
| DP553 | agctgtggataaagtatcatccacacttatccacatgtcaattatccaca | |
| DP554 | cctgttgacacccctgcgatagttcccgatactgagcaca | Pcon |
| DP555 | agcttgtgctcagtatcgggaactatcgcaggggtgtcaa | |
| DP556 | cctgttatccacacccgggttatccacagttttcccgagcccttatccac | Pneg |
| DP557 | agctgtggataagggctcgggaaaactgtggataacccgggtgtggataa |
Oligonucleotides for the construction of strains and plasmids and qPCR.
| Primers | Sequence | Use |
|---|---|---|
| DJP001 | gaaagaggagaaatactagatgaccatgattacggattcac | Amplifying lacZ gene from MG1655 genome |
| DJP002 | ttgatgcctggcttatcattatttttgacaccagaccaact | |
| DJP003 | gaaagaggagaaatactagatggtttccaagggcgagg | Amplifying mCherry gene from pMD19-hupA-mcherry |
| DJP004 | ttgatgcctggcttatcattatttgtagagctcatccatgc | |
| DJP005 | ccacaaggtctccagctgatcaagatcctgcaaaacgat | Amplifying native dnaA promoter (Pnative) from MG1655 genome |
| DJP006 | ccacatggtctcccctgccaatttttgtctatggtcat | |
| DJP007 | ctgttttcttgcaagattactagtccatccagtgctcatttgtacagttcatccatacc | Amplifying Pcon-gfp cassette from Pcon-GFP plasmid |
| DJP008 | ccttagtgactcctgcagtcctgggtgttgacacccctgcgat | |
| DJP009 | cgccatatgtcactttcgctttggca | Amplify dnaA gene from MG1655 genome for the construction of pET-28a-DnaA plasmid |
| DJP010 | cgcaagcttttacgatgacaatgttctga | |
| DJP011 | cgccatatgagcgaagcacttaaaat | Amplify hns gene from MG1655 genome for the construction of pET-28a-H-NS plasmid |
| DJP012 | cgcaagcttttattgcttgatcaggaaatc | |
| DJP013 | cgatctgcagaaagaggagaaatactaggtgtcactttcgctttggc | Amplifying dnaA gene from MG1655 genome |
| DJP014 | gtgagccggatccttacgatgacaatgttctgatt | |
| DJP015 | atgcctgcagtcacacaggaaacctactagatgaaaacgattgaagttgatgatg | Amplifying seqA gene from MG1655 genome |
| DJP016 | gtcaggatccttagatagttccgcaaaccttct | |
| DJP017 | cagtaagcttaaagaggagaaatactagatgagcgaagcacttaaaattc | Amplifying hns gene from MG1655 genome |
| DJP018 | gtacggatccttattgcttgatcaggaaatcgtcg | |
| DJP019 | tggatcgcgaagaaaggc | Amplifying T3-Ptet-tetR-dnaA cassette from pMD19-RdnaA plasmid |
| DJP020 | tcgatatcaaccatggctgcggcaaaatcgctcgagt | |
| DJP021 | cgttttatttgatgggtcgacctgcagggaaagccacgt | Amplifying kanr gene from the plasmid pEcCas |
| DJP022 | ttcttcgcgatccatgctagcagcaaccaattaaccaattc | |
| DJP023 | gcagccatggttgatatcgagctcgcttgga | Amplifying p15A-T1 fragment from the PZA31-Ptet-M2-GFP plasmid |
| DJP024 | cacatgaagtcgacccatcaaataaaacgaaaggctc | |
| DJP025 | tcaacccactgcagcaaccaattaaccaattctgattacgccccgccctgcca | Amplifying Cmr gene from pZA31-Ptet-M2-GFP plasmid for the construction of CmPcas |
| DJP026 | tgtctgcttacataaacagtaatacaaggggtgttatggagaaaaaaatcactgg | |
| DJP027 | ttaaaggtattaaaaacaactttttgtctttttaccttcccgtttcgctccaggaaacagctatgaccatg | Amplifying the T0-Amp-T1-Ptet-tetR-hns or T0-Amp-T1-Ptet -tetR-seqA cassette, and then assembling to attB locus via λRed recombination system |
| DJP028 | cacaggttgctccgggctatgaaatagaaaaatgaatccgttgaagcctgtgtaaaacgacggccagt | |
| DJP029 | tctattattacctcaacaaaccaccccaatataagtttgagattactacaatgattgaacaagatggattgcac | Amplifying kanr gene from plkml plasmid for the deletion of native hns gene |
| DJP030 | aaaaaatcccgccgctggcgggattttaagcaagtgcaatctacaaaagatcagaagaactcgtcaagaagg | |
| DJP031 | ggcctgcacgattgtggattgccattgctttgtcctttgtctgcaacgttctagtgaacctcttcgaggg | Amplifying kanr gene from plkml plasmid for the deletion of native seqA gene |
| DJP032 | catatactcctggcgacttgtattcagctaagacactgcactggattaaggccgatcatattcaataaccc | |
| DJP033 | gagtcatgcacagattcgta | T0-Ptet-tetR-T3 cassette was amplified from plasmid pMD19-tetR with primers DJP035/DJP036, the intS upstream and downstream sequences were amplified from MG1655 genome with primers DJP033/DJP034, and DJP037/DJP038, respectively. Three fragments were ligated via overlap PCR with primers DJP033/DJP038. |
| DJP034 | gatctgaagcgaaccatga | |
| DJP035 | tcatggttcgcttcagatcaggttgtgtgttcctcttcattc | |
| DJP036 | cctcatagccgatttgtttgaaggaaacagctatgaccatga | |
| DJP037 | caaacaaatcggctatgagg | |
| DJP038 | agtgtataagggtgttcagc | |
| DJP039 | gtacgttagatcgtagacgcttggcgataaagaacgccacttcgcccggccgtgagcatttaggatccggctcaccttca | Amplifying T3-kanr-T1 cassette from p15A-RdnaA plasmid to replace the native Pnative-dnaA on the genome |
| DJP040 | gatcgattaagccaatttttgtctatggtcattaaattttccaatatgcggcgtaaatctagggcggcggatttg | |
| DJP041 | ttaggcaccccaggctttac | The dnaA-T3 and T0-Amp-T1-Ptet fragments were amplified from the pMD19-RdnaA plasmid using primers DJP041/DJP042 and DJP043/DJP044, respectively. These two fragments were then combined via overlap PCR using primers DJP045/DJP046 to generate a homologous recombination fragment for inserting T0-Amp -T1-Ptet-dnaA-T3 between the yidA and yidX genes. |
| DJP042 | cagtgatagagatactgagcacataagcttaaagaggagaaagactaggtgtcactttcgc | |
| DJP043 | gtgctcagtatctctatcactgatagggatgtcaatctctatcactgatagggagggactcgag | |
| DJP044 | aaaacgacggccagtgaa | |
| DJP045 | gatggcgtggcgtttgctattgagaagtatgtgctgaattaatctgtgggcggtcatcttcggctactgtct | |
| DJP046 | accgctgcaatttctggttgtatatgcagtaaaccaataatcagtaagcgcaggaaacagctatgaccatg | |
| DJP047 | saacttcgagtggagtccgccgtg | Inserting to the CPP00458 backbone to generate P_CRidnaA1 plasmid to shut down dnaA expression |
| DJP048 | cgagcacggcggactccactcgaa | |
| DJP049 | aaacgatgaagaccgtctttctcc | Amplifying homologous sequences to asnA gene |
| DJP050 | ttcttagacgtcaggtggcattattacagcagagaagggacg | |
| DJP051 | tgccacctgacgtctaagaa | Amplifying PJ23119-sgRNAdnaA:PJ23100-tetR:Ptet-dUn1Cas12f1 cassette from P_CRidnaA1 plasmid |
| DJP052 | tctagattactgcgcagatggcgacgataatgacagcagccaactcagcttc | |
| DJP053 | gccatctgcgcagtaatctagatcgcatcccggtatcaaagc | Amplifying homologous sequences to viaA gene |
| DJP054 | atgaacagtgtgcgaaagcg | |
| DJP055 | ccacaaggcatcgaacaagc | Assembling the upper three fragments through overlap PCR |
| DJP056 | gtggaacccggtactggaag | |
| DJP057 | cttctttggtgctgtactca | RT-qPCR primer for rpoA |
| DJP058 | tggttgatatcgagcaagtg | |
| DJP059 | cccgattgcaggatgagtt | RT-qPCR primer for dnaA |
| DJP060 | tacccaatcgaggacaaaac | |
| DJP061 | cgttatccggaccatatgaa | RT-qPCR primer for gfp |
| DJP062 | cttcaaatttcacttccgca | |
| DJP063 | aagttaaactgcgtggtact | RT-qPCR primer for mcherry |
| DJP064 | acaggtttcttggctttgta | |
| DJP065 | tatgttgaaattttccgccg | RT-qPCR primer for seqA |
| DJP066 | attcatccgaaagcagaagt | |
| DJP067 | gtattgacccgaacgaactg | RT-qPCR primer for hns |
| DJP068 | agtccaggttttagtttcgc |
43 3'-TAMRA probes spanning the whole coding sequence of the dnaA gene.
| gccaaagcgaaagtgacacg | agaacgataggtcggttctg | cttcctgagatcgttcttta | cacgaagtcgatggtgatcg |
| tgcaatcgggcaagacactg | acgtgtgtttgacgtttacg | ggcgttgaaggtgtggaaaa | tgaccagtttttcctgcaat |
| aattctgtggctggtaactc | cgccagttggttagatttac | atctgttgattaccttccag | ccgtcttctgaatattgtcg |
| caatgggcgtatccacatac | ggaacaacgggttataggca | atagcgatccgaggtgagaa | cgcgactttgatcttgtagt |
| agcgtgttatcgctcagttc | atgcagcaggtgagttttac | caacgccgttgatctctttc | atcgacgcttggaaaggaga |
| cccaatcgaggacaaaacgg | taaaccactttggcattcgg | caaccgaagcgggatttcaa | tgtggttagtcagctctttc |
| ttattaaggtacttgtcccg | tgaacaaagcgctcggagtg | tttttcatcaggatcgccac | caccaaacgcatcgccaatc |
| gcagaaactggttagcagtc | tttgcagggctttaaccatg | acgaatgtcgttttcgtcgg | ttacggcaggcatgaagcac |
| cgacttcaaaacgcagctgt | ttaaactcttcgatcgcgtt | ggcgataaagaacgccactt | ctcttcacgcaactgctcga |
| gtagaaggcgcagcacgttg | atctacggaacggtagtagc | gtacgttagatcgtagacgc | aatcttctttgatatcgtgg |
| ggacgttatcccaacctgag | gaatatcgtcgatcagcagt | ggtaaagttggcattggcaa |