Tachykinin acts upstream of autocrine Hedgehog signaling during nociceptive sensitization in Drosophila

  1. Seol Hee Im
  2. Kendra Takle
  3. Juyeon Jo
  4. Daniel T Babcock
  5. Zhiguo Ma
  6. Yang Xiang
  7. Michael J Galko  Is a corresponding author
  1. University of Texas MD Anderson Cancer Center, United States
  2. University of Massachusetts Medical School, United States
  3. University of Wisconsin-Madison, United States

Abstract

Pain signaling in vertebrates is modulated by neuropeptides like Substance P (SP). To determine whether such modulation is conserved and potentially uncover novel interactions between nociceptive signaling pathways we examined SP/Tachykinin signaling in a Drosophila model of tissue damage-induced nociceptive hypersensitivity. Tissue-specific knockdowns and genetic mutant analyses revealed that both Tachykinin and Tachykinin-like receptor (DTKR99D) are required for damage-induced thermal nociceptive sensitization. Electrophysiological recording showed that DTKR99D is required in nociceptive sensory neurons for temperature-dependent increases in firing frequency upon tissue damage. DTKR overexpression caused both behavioral and electrophysiological thermal nociceptive hypersensitivity. Hedgehog, another key regulator of nociceptive sensitization, was produced by nociceptive sensory neurons following tissue damage. Surprisingly, genetic epistasis analysis revealed that DTKR function was upstream of Hedgehog-dependent sensitization in nociceptive sensory neurons. Our results highlight a conserved role for Tachykinin signaling in regulating nociception and the power of Drosophila for genetic dissection of nociception.

Article and author information

Author details

  1. Seol Hee Im

    Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kendra Takle

    Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Juyeon Jo

    Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Daniel T Babcock

    Department of Genetics, University of Wisconsin-Madison, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zhiguo Ma

    Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Yang Xiang

    Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Michael J Galko

    Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, United States
    For correspondence
    mjgalko@mdanderson.org
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Mani Ramaswami, Trinity College Dublin, Ireland

Version history

  1. Received: August 8, 2015
  2. Accepted: November 16, 2015
  3. Accepted Manuscript published: November 17, 2015 (version 1)
  4. Version of Record published: January 22, 2016 (version 2)

Copyright

© 2015, Im et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,023
    views
  • 666
    downloads
  • 58
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Seol Hee Im
  2. Kendra Takle
  3. Juyeon Jo
  4. Daniel T Babcock
  5. Zhiguo Ma
  6. Yang Xiang
  7. Michael J Galko
(2015)
Tachykinin acts upstream of autocrine Hedgehog signaling during nociceptive sensitization in Drosophila
eLife 4:e10735.
https://doi.org/10.7554/eLife.10735

Share this article

https://doi.org/10.7554/eLife.10735

Further reading

    1. Neuroscience
    Vezha Boboeva, Alberto Pezzotta ... Athena Akrami
    Research Article

    The central tendency bias, or contraction bias, is a phenomenon where the judgment of the magnitude of items held in working memory appears to be biased toward the average of past observations. It is assumed to be an optimal strategy by the brain and commonly thought of as an expression of the brain’s ability to learn the statistical structure of sensory input. On the other hand, recency biases such as serial dependence are also commonly observed and are thought to reflect the content of working memory. Recent results from an auditory delayed comparison task in rats suggest that both biases may be more related than previously thought: when the posterior parietal cortex (PPC) was silenced, both short-term and contraction biases were reduced. By proposing a model of the circuit that may be involved in generating the behavior, we show that a volatile working memory content susceptible to shifting to the past sensory experience – producing short-term sensory history biases – naturally leads to contraction bias. The errors, occurring at the level of individual trials, are sampled from the full distribution of the stimuli and are not due to a gradual shift of the memory toward the sensory distribution’s mean. Our results are consistent with a broad set of behavioral findings and provide predictions of performance across different stimulus distributions and timings, delay intervals, as well as neuronal dynamics in putative working memory areas. Finally, we validate our model by performing a set of human psychophysics experiments of an auditory parametric working memory task.

    1. Neuroscience
    Michael Berger, Michèle Fraatz ... Henrike Scholz
    Research Article

    The brain regulates food intake in response to internal energy demands and food availability. However, can internal energy storage influence the type of memory that is formed? We show that the duration of starvation determines whether Drosophila melanogaster forms appetitive short-term or longer-lasting intermediate memories. The internal glycogen storage in the muscles and adipose tissue influences how intensely sucrose-associated information is stored. Insulin-like signaling in octopaminergic reward neurons integrates internal energy storage into memory formation. Octopamine, in turn, suppresses the formation of long-term memory. Octopamine is not required for short-term memory because octopamine-deficient mutants can form appetitive short-term memory for sucrose and to other nutrients depending on the internal energy status. The reduced positive reinforcing effect of sucrose at high internal glycogen levels, combined with the increased stability of food-related memories due to prolonged periods of starvation, could lead to increased food intake.