Motion along the mental number line reveals shared representations for numerosity and space

  1. Caspar M Schwiedrzik  Is a corresponding author
  2. Benjamin Bernstein
  3. Lucia Melloni
  1. The Rockefeller University, United States
  2. Northwestern University, United States
  3. Max Planck Institute for Brain Research, Germany

Abstract

Perception of number and space are tightly intertwined. It has been proposed that this is due to "cortical recycling", where numerosity processing takes over circuits originally processing space. Do such "recycled" circuits retain their original functionality? Here, we investigate interactions between numerosity and motion direction, two functions that both localize to parietal cortex. We describe a new phenomenon in which visual motion direction adapts nonsymbolic numerosity perception, giving rise to a repulsive aftereffect: motion to the left adapts small numbers, leading to overestimation of numerosity, while motion to the right adapts large numbers, resulting in underestimation. The reference frame of this effect is spatiotopic. Together with the tuning properties of the effect this suggests that motion direction-numerosity cross-adaptation may occur in a homolog of area LIP. "Cortical recycling" thus expands but does not obliterate the functions originally performed by the recycled circuit, allowing for shared computations across domains.

Article and author information

Author details

  1. Caspar M Schwiedrzik

    Laboratory of Neural Systems, The Rockefeller University, New York, United States
    For correspondence
    cschwiedrz@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Benjamin Bernstein

    Department of Psychology, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lucia Melloni

    Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: All subjects gave written informed consent before participation. All procedures were approved by The University Committee on Activities Involving Human Subjects at New York University.

Copyright

© 2016, Schwiedrzik et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,512
    views
  • 297
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Caspar M Schwiedrzik
  2. Benjamin Bernstein
  3. Lucia Melloni
(2016)
Motion along the mental number line reveals shared representations for numerosity and space
eLife 5:e10806.
https://doi.org/10.7554/eLife.10806

Share this article

https://doi.org/10.7554/eLife.10806

Further reading

    1. Neuroscience
    Sara A Nolin, Mary E Faulkner ... Kristina Visscher
    Research Article

    The brain is organized into systems and networks of interacting components. The functional connections among these components give insight into the brain's organization and may underlie some cognitive effects of aging. Examining the relationship between individual differences in brain organization and cognitive function in older adults who have reached oldest old ages with healthy cognition can help us understand how these networks support healthy cognitive aging. We investigated functional network segregation in 146 cognitively healthy participants aged 85+ in the McKnight Brain Aging Registry. We found that the segregation of the association system and the individual networks within the association system [the fronto-parietal network (FPN), cingulo-opercular network (CON) and default mode network (DMN)], has strong associations with overall cognition and processing speed. We also provide a healthy oldest-old (85+) cortical parcellation that can be used in future work in this age group. This study shows that network segregation of the oldest-old brain is closely linked to cognitive performance. This work adds to the growing body of knowledge about differentiation in the aged brain by demonstrating that cognitive ability is associated with differentiated functional networks in very old individuals representing successful cognitive aging.

    1. Neuroscience
    Olga Kepinska, Josue Dalboni da Rocha ... Narly Golestani
    Research Article

    This study examines whether auditory cortex anatomy reflects multilingual experience, specifically individuals’ phonological repertoire. Using data from over 200 participants exposed to 1–7 languages across 36 languages, we analyzed the role of language experience and typological distances between languages they spoke in shaping neural signatures of multilingualism. Our findings reveal a negative relationship between the thickness of the left and right second transverse temporal gyrus (TTG) and participants’ degree of multilingualism. Models incorporating phoneme-level information in the language experience index explained the most variance in TTG thickness, suggesting that a more extensive and more phonologically diverse language experience is associated with thinner cortices in the second TTG. This pattern, consistent across two datasets, supports the idea of experience-driven pruning and neural efficiency. Our findings indicate that experience with typologically distant languages appear to impact the brain differently than those with similar languages. Moreover, they suggest that early auditory regions seem to represent phoneme-level cross-linguistic information, contrary to the most established models of language processing in the brain, which suggest that phonological processing happens in more lateral posterior superior temporal gyrus (STG) and superior temporal sulcus (STS).