Aurkb/PP1-mediated resetting of Oct4 during the cell cycle determines the identity of embryonic stem cells

  1. Jihoon Shin
  2. Tae Wan Kim
  3. Hyunsoo Kim
  4. Hae Ji Kim
  5. Min Young Suh
  6. Sangho Lee
  7. Han-Teo Lee
  8. Sojung Kwak
  9. Sang-Eun Lee
  10. Jong-Hyuk Lee
  11. Hyonchol Jang
  12. Eun-Jung Cho
  13. Hong-Duk Youn  Is a corresponding author
  1. Seoul National University College of Medicine, Republic of Korea
  2. Seoul National University, Republic of Korea
  3. National Cancer Center, Republic of Korea
  4. Sungkyunkwan University, Republic of Korea

Abstract

Pluripotency transcription programs by core transcription factors (CTFs) might be reset during M/G1 transition to maintain the pluripotency of embryonic stem cells (ESCs). However, little is known about how CTFs are governed during cell cycle progression. Here, we demonstrate that the regulation of Oct4 by Aurora kinase b (Aurkb)/protein phosphatase 1 (PP1) during the cell cycle is important for resetting Oct4 to pluripotency and cell cycle genes in determining the identity of ESCs. Aurkb phosphorylates Oct4(S229) during G2/M phase, leading to the dissociation of Oct4 from chromatin, whereas PP1 binds Oct4 and dephosphorylates Oct4(S229) during M/G1 transition, which resets Oct4-driven transcription for pluripotency and the cell cycle. Aurkb phosphor-mimetic and PP1 binding-deficient mutations in Oct4 alter the cell cycle, effect the loss of pluripotency in ESCs, and decrease the efficiency of somatic cell reprogramming. Our findings provide evidence that the cell cycle is linked directly to pluripotency programs in ESCs.

Article and author information

Author details

  1. Jihoon Shin

    National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  2. Tae Wan Kim

    National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  3. Hyunsoo Kim

    National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  4. Hae Ji Kim

    Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  5. Min Young Suh

    Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  6. Sangho Lee

    Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  7. Han-Teo Lee

    Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  8. Sojung Kwak

    National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  9. Sang-Eun Lee

    National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  10. Jong-Hyuk Lee

    National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  11. Hyonchol Jang

    Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  12. Eun-Jung Cho

    College of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  13. Hong-Duk Youn

    National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
    For correspondence
    hdyoun@snu.ac.kr
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Shin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,392
    views
  • 865
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jihoon Shin
  2. Tae Wan Kim
  3. Hyunsoo Kim
  4. Hae Ji Kim
  5. Min Young Suh
  6. Sangho Lee
  7. Han-Teo Lee
  8. Sojung Kwak
  9. Sang-Eun Lee
  10. Jong-Hyuk Lee
  11. Hyonchol Jang
  12. Eun-Jung Cho
  13. Hong-Duk Youn
(2016)
Aurkb/PP1-mediated resetting of Oct4 during the cell cycle determines the identity of embryonic stem cells
eLife 5:e10877.
https://doi.org/10.7554/eLife.10877

Share this article

https://doi.org/10.7554/eLife.10877

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Stephanie M Stuteley, Ghader Bashiri
    Insight

    In the bacterium M. smegmatis, an enzyme called MftG allows the cofactor mycofactocin to transfer electrons released during ethanol metabolism to the electron transport chain.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Cristina Paissoni, Sarita Puri ... Carlo Camilloni
    Research Article

    Both immunoglobulin light-chain (LC) amyloidosis (AL) and multiple myeloma (MM) share the overproduction of a clonal LC. However, while LCs in MM remain soluble in circulation, AL LCs misfold into toxic-soluble species and amyloid fibrils that accumulate in organs, leading to distinct clinical manifestations. The significant sequence variability of LCs has hindered the understanding of the mechanisms driving LC aggregation. Nevertheless, emerging biochemical properties, including dimer stability, conformational dynamics, and proteolysis susceptibility, distinguish AL LCs from those in MM under native conditions. This study aimed to identify a2 conformational fingerprint distinguishing AL from MM LCs. Using small-angle X-ray scattering (SAXS) under native conditions, we analyzed four AL and two MM LCs. We observed that AL LCs exhibited a slightly larger radius of gyration and greater deviations from X-ray crystallography-determined or predicted structures, reflecting enhanced conformational dynamics. SAXS data, integrated with molecular dynamics simulations, revealed a conformational ensemble where LCs adopt multiple states, with variable and constant domains either bent or straight. AL LCs displayed a distinct, low-populated, straight conformation (termed H state), which maximized solvent accessibility at the interface between constant and variable domains. Hydrogen-deuterium exchange mass spectrometry experimentally validated this H state. These findings reconcile diverse experimental observations and provide a precise structural target for future drug design efforts.