Aurkb/PP1-mediated resetting of Oct4 during the cell cycle determines the identity of embryonic stem cells

  1. Jihoon Shin
  2. Tae Wan Kim
  3. Hyunsoo Kim
  4. Hae Ji Kim
  5. Min Young Suh
  6. Sangho Lee
  7. Han-Teo Lee
  8. Sojung Kwak
  9. Sang-Eun Lee
  10. Jong-Hyuk Lee
  11. Hyonchol Jang
  12. Eun-Jung Cho
  13. Hong-Duk Youn  Is a corresponding author
  1. Seoul National University College of Medicine, Republic of Korea
  2. Seoul National University, Republic of Korea
  3. National Cancer Center, Republic of Korea
  4. Sungkyunkwan University, Republic of Korea

Abstract

Pluripotency transcription programs by core transcription factors (CTFs) might be reset during M/G1 transition to maintain the pluripotency of embryonic stem cells (ESCs). However, little is known about how CTFs are governed during cell cycle progression. Here, we demonstrate that the regulation of Oct4 by Aurora kinase b (Aurkb)/protein phosphatase 1 (PP1) during the cell cycle is important for resetting Oct4 to pluripotency and cell cycle genes in determining the identity of ESCs. Aurkb phosphorylates Oct4(S229) during G2/M phase, leading to the dissociation of Oct4 from chromatin, whereas PP1 binds Oct4 and dephosphorylates Oct4(S229) during M/G1 transition, which resets Oct4-driven transcription for pluripotency and the cell cycle. Aurkb phosphor-mimetic and PP1 binding-deficient mutations in Oct4 alter the cell cycle, effect the loss of pluripotency in ESCs, and decrease the efficiency of somatic cell reprogramming. Our findings provide evidence that the cell cycle is linked directly to pluripotency programs in ESCs.

Article and author information

Author details

  1. Jihoon Shin

    National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  2. Tae Wan Kim

    National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  3. Hyunsoo Kim

    National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  4. Hae Ji Kim

    Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  5. Min Young Suh

    Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  6. Sangho Lee

    Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  7. Han-Teo Lee

    Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  8. Sojung Kwak

    National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  9. Sang-Eun Lee

    National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  10. Jong-Hyuk Lee

    National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  11. Hyonchol Jang

    Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  12. Eun-Jung Cho

    College of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  13. Hong-Duk Youn

    National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
    For correspondence
    hdyoun@snu.ac.kr
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. George Q Daley, Harvard Medical School, United States

Version history

  1. Received: August 14, 2015
  2. Accepted: February 13, 2016
  3. Accepted Manuscript published: February 15, 2016 (version 1)
  4. Accepted Manuscript updated: February 17, 2016 (version 2)
  5. Version of Record published: March 9, 2016 (version 3)

Copyright

© 2016, Shin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,334
    views
  • 859
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jihoon Shin
  2. Tae Wan Kim
  3. Hyunsoo Kim
  4. Hae Ji Kim
  5. Min Young Suh
  6. Sangho Lee
  7. Han-Teo Lee
  8. Sojung Kwak
  9. Sang-Eun Lee
  10. Jong-Hyuk Lee
  11. Hyonchol Jang
  12. Eun-Jung Cho
  13. Hong-Duk Youn
(2016)
Aurkb/PP1-mediated resetting of Oct4 during the cell cycle determines the identity of embryonic stem cells
eLife 5:e10877.
https://doi.org/10.7554/eLife.10877

Share this article

https://doi.org/10.7554/eLife.10877

Further reading

    1. Biochemistry and Chemical Biology
    Boglarka Zambo, Evelina Edelweiss ... Gergo Gogl
    Research Article

    Truncation of the protein-protein interaction SH3 domain of the membrane remodeling Bridging Integrator 1 (BIN1, Amphiphysin 2) protein leads to centronuclear myopathy. Here, we assessed the impact of a set of naturally observed, previously uncharacterized BIN1 SH3 domain variants using conventional in vitro and cell-based assays monitoring the BIN1 interaction with dynamin 2 (DNM2) and identified potentially harmful ones that can be also tentatively connected to neuromuscular disorders. However, SH3 domains are typically promiscuous and it is expected that other, so far unknown partners of BIN1 exist besides DNM2, that also participate in the development of centronuclear myopathy. In order to shed light on these other relevant interaction partners and to get a holistic picture of the pathomechanism behind BIN1 SH3 domain variants, we used affinity interactomics. We identified hundreds of new BIN1 interaction partners proteome-wide, among which many appear to participate in cell division, suggesting a critical role of BIN1 in the regulation of mitosis. Finally, we show that the identified BIN1 mutations indeed cause proteome-wide affinity perturbation, signifying the importance of employing unbiased affinity interactomic approaches.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.