CasExpress reveals widespread and diverse patterns of cell survival of caspase-3 activation during development in vivo

Abstract

Caspase-3 carries out the executioner phase of apoptosis, however under special circumstances, cells can survive its activity. To document systematically where and when cells survive caspase-3 activation in vivo, we designed a system, CasExpress, which drives fluorescent protein expression, transiently or permanently, in cells that survive caspase-3 activation in Drosophila. We discovered widespread survival of caspase-3 activity. Distinct spatial and temporal patterns emerged in different tissues. Some cells activated caspase-3 during their normal development in every cell and in every animal without evidence of apoptosis. In other tissues, such as the brain, expression was sporadic both temporally and spatially and overlapped with periods of apoptosis. In adults, reporter expression was evident in a large fraction of cells in most tissues of every animal; however the precise patterns varied. Inhibition of caspase activity in wing discs reduced wing size demonstrating functional significance. The implications of these patterns are discussed.

Article and author information

Author details

  1. Austin Xun Ding

    Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Gongping Sun

    Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yewubdar G Argaw

    Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jessica O Wong

    Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sreesankar Easwaran

    Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Denise J Montell

    Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, United States
    For correspondence
    denise.montell@lifesci.ucsb.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Ding et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,067
    views
  • 1,152
    downloads
  • 108
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Austin Xun Ding
  2. Gongping Sun
  3. Yewubdar G Argaw
  4. Jessica O Wong
  5. Sreesankar Easwaran
  6. Denise J Montell
(2016)
CasExpress reveals widespread and diverse patterns of cell survival of caspase-3 activation during development in vivo
eLife 5:e10936.
https://doi.org/10.7554/eLife.10936

Share this article

https://doi.org/10.7554/eLife.10936

Further reading

    1. Cell Biology
    Affiong Ika Oqua, Kin Chao ... Alejandra Tomas
    Research Article

    G protein-coupled receptors (GPCRs) are integral membrane proteins which closely interact with their plasma membrane lipid microenvironment. Cholesterol is a lipid enriched at the plasma membrane with pivotal roles in the control of membrane fluidity and maintenance of membrane microarchitecture, directly impacting on GPCR stability, dynamics, and function. Cholesterol extraction from pancreatic beta cells has previously been shown to disrupt the internalisation, clustering, and cAMP responses of the glucagon-like peptide-1 receptor (GLP-1R), a class B1 GPCR with key roles in the control of blood glucose levels via the potentiation of insulin secretion in beta cells and weight reduction via the modulation of brain appetite control centres. Here, we unveil the detrimental effect of a high cholesterol diet on GLP-1R-dependent glucoregulation in vivo, and the improvement in GLP-1R function that a reduction in cholesterol synthesis using simvastatin exerts in pancreatic islets. We next identify and map sites of cholesterol high occupancy and residence time on active vs inactive GLP-1Rs using coarse-grained molecular dynamics (cgMD) simulations, followed by a screen of key residues selected from these sites and detailed analyses of the effects of mutating one of these, Val229, to alanine on GLP-1R-cholesterol interactions, plasma membrane behaviours, clustering, trafficking and signalling in INS-1 832/3 rat pancreatic beta cells and primary mouse islets, unveiling an improved insulin secretion profile for the V229A mutant receptor. This study (1) highlights the role of cholesterol in regulating GLP-1R responses in vivo; (2) provides a detailed map of GLP-1R - cholesterol binding sites in model membranes; (3) validates their functional relevance in beta cells; and (4) highlights their potential as locations for the rational design of novel allosteric modulators with the capacity to fine-tune GLP-1R responses.

    1. Cell Biology
    2. Immunology and Inflammation
    Alejandro Rosell, Agata Adelajda Krygowska ... Esther Castellano Sanchez
    Research Article

    Macrophages are crucial in the body’s inflammatory response, with tightly regulated functions for optimal immune system performance. Our study reveals that the RAS–p110α signalling pathway, known for its involvement in various biological processes and tumourigenesis, regulates two vital aspects of the inflammatory response in macrophages: the initial monocyte movement and later-stage lysosomal function. Disrupting this pathway, either in a mouse model or through drug intervention, hampers the inflammatory response, leading to delayed resolution and the development of more severe acute inflammatory reactions in live models. This discovery uncovers a previously unknown role of the p110α isoform in immune regulation within macrophages, offering insight into the complex mechanisms governing their function during inflammation and opening new avenues for modulating inflammatory responses.