Novel origin of lamin-derived cytoplasmic intermediate filaments in tardigrades

  1. Lars Hering  Is a corresponding author
  2. Jamal-Eddine Bouameur
  3. Julian Reichelt
  4. Thomas M Magin
  5. Georg Mayer
  1. University of Kassel, Germany
  2. University of Leipzig, Germany

Abstract

Intermediate filament (IF) proteins, including nuclear lamins and cytoplasmic IF proteins, are essential cytoskeletal components of bilaterian cells. Despite their important role in protecting tissues against mechanical force, no cytoplasmic IF proteins have been convincingly identified in arthropods. Here we show that the ancestral cytoplasmic IF protein gene was lost in the entire panarthropod (onychophoran + tardigrade + arthropod) rather than arthropod lineage and that nuclear, lamin-derived proteins instead acquired new cytoplasmic roles at least three times independently in collembolans, copepods, and tardigrades. Transcriptomic and genomic data revealed three IF-protein genes in the tardigrade Hypsibius dujardini, one of which (cytotardin) occurs exclusively in the cytoplasm of epidermal and foregut epithelia, where it forms belt-like filaments around each epithelial cell. These results suggest that a lamin derivative has been co-opted to enhance tissue stability in tardigrades, a function otherwise served by cytoplasmic IF proteins in all other bilaterians.

Article and author information

Author details

  1. Lars Hering

    Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
    For correspondence
    lars.hering@uni-kassel.de
    Competing interests
    The authors declare that no competing interests exist.
  2. Jamal-Eddine Bouameur

    Institute of Biology and Translational Center for Regenerative Medicine, University of Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Julian Reichelt

    Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Thomas M Magin

    Institute of Biology and Translational Center for Regenerative Medicine, University of Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Georg Mayer

    Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Harald Herrmann, Deutsches Krebsforschungszentrum, Germany

Version history

  1. Received: August 25, 2015
  2. Accepted: February 2, 2016
  3. Accepted Manuscript published: February 3, 2016 (version 1)
  4. Accepted Manuscript updated: February 5, 2016 (version 2)
  5. Version of Record published: March 3, 2016 (version 3)

Copyright

© 2016, Hering et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,820
    views
  • 554
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lars Hering
  2. Jamal-Eddine Bouameur
  3. Julian Reichelt
  4. Thomas M Magin
  5. Georg Mayer
(2016)
Novel origin of lamin-derived cytoplasmic intermediate filaments in tardigrades
eLife 5:e11117.
https://doi.org/10.7554/eLife.11117

Share this article

https://doi.org/10.7554/eLife.11117

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    N Suhas Jagannathan, Javier Yu Peng Koh ... Lisa Tucker-Kellogg
    Research Article

    Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.

    1. Cell Biology
    2. Developmental Biology
    Filip Knop, Apolena Zounarova ... Marie Macůrková
    Research Article

    During Caenorhabditis elegans development, multiple cells migrate long distances or extend processes to reach their final position and/or attain proper shape. The Wnt signalling pathway stands out as one of the major coordinators of cell migration or cell outgrowth along the anterior-posterior body axis. The outcome of Wnt signalling is fine-tuned by various mechanisms including endocytosis. In this study, we show that SEL-5, the C. elegans orthologue of mammalian AP2-associated kinase AAK1, acts together with the retromer complex as a positive regulator of EGL-20/Wnt signalling during the migration of QL neuroblast daughter cells. At the same time, SEL-5 in cooperation with the retromer complex is also required during excretory canal cell outgrowth. Importantly, SEL-5 kinase activity is not required for its role in neuronal migration or excretory cell outgrowth, and neither of these processes is dependent on DPY-23/AP2M1 phosphorylation. We further establish that the Wnt proteins CWN-1 and CWN-2 together with the Frizzled receptor CFZ-2 positively regulate excretory cell outgrowth, while LIN-44/Wnt and LIN-17/Frizzled together generate a stop signal inhibiting its extension.