Novel origin of lamin-derived cytoplasmic intermediate filaments in tardigrades

  1. Lars Hering  Is a corresponding author
  2. Jamal-Eddine Bouameur
  3. Julian Reichelt
  4. Thomas M Magin
  5. Georg Mayer
  1. University of Kassel, Germany
  2. University of Leipzig, Germany

Abstract

Intermediate filament (IF) proteins, including nuclear lamins and cytoplasmic IF proteins, are essential cytoskeletal components of bilaterian cells. Despite their important role in protecting tissues against mechanical force, no cytoplasmic IF proteins have been convincingly identified in arthropods. Here we show that the ancestral cytoplasmic IF protein gene was lost in the entire panarthropod (onychophoran + tardigrade + arthropod) rather than arthropod lineage and that nuclear, lamin-derived proteins instead acquired new cytoplasmic roles at least three times independently in collembolans, copepods, and tardigrades. Transcriptomic and genomic data revealed three IF-protein genes in the tardigrade Hypsibius dujardini, one of which (cytotardin) occurs exclusively in the cytoplasm of epidermal and foregut epithelia, where it forms belt-like filaments around each epithelial cell. These results suggest that a lamin derivative has been co-opted to enhance tissue stability in tardigrades, a function otherwise served by cytoplasmic IF proteins in all other bilaterians.

Article and author information

Author details

  1. Lars Hering

    Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
    For correspondence
    lars.hering@uni-kassel.de
    Competing interests
    The authors declare that no competing interests exist.
  2. Jamal-Eddine Bouameur

    Institute of Biology and Translational Center for Regenerative Medicine, University of Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Julian Reichelt

    Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Thomas M Magin

    Institute of Biology and Translational Center for Regenerative Medicine, University of Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Georg Mayer

    Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Hering et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,893
    views
  • 567
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lars Hering
  2. Jamal-Eddine Bouameur
  3. Julian Reichelt
  4. Thomas M Magin
  5. Georg Mayer
(2016)
Novel origin of lamin-derived cytoplasmic intermediate filaments in tardigrades
eLife 5:e11117.
https://doi.org/10.7554/eLife.11117

Share this article

https://doi.org/10.7554/eLife.11117

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.

    1. Cell Biology
    John Yong, Jacqueline E Villalta ... Calvin H Jan
    Research Article

    Protein aggregation increases during aging and is a pathological hallmark of many age-related diseases. Protein homeostasis (proteostasis) depends on a core network of factors directly influencing protein production, folding, trafficking, and degradation. Cellular proteostasis also depends on the overall composition of the proteome and numerous environmental variables. Modulating this cellular proteostasis state can influence the stability of multiple endogenous proteins, yet the factors contributing to this state remain incompletely characterized. Here, we performed genome-wide CRISPRi screens to elucidate the modulators of proteostasis state in mammalian cells, using a fluorescent dye to monitor endogenous protein aggregation. These screens identified known components of the proteostasis network and uncovered a novel link between protein and lipid homeostasis. Increasing lipid uptake and/or disrupting lipid metabolism promotes the accumulation of sphingomyelins and cholesterol esters and drives the formation of detergent-insoluble protein aggregates at the lysosome. Proteome profiling of lysosomes revealed ESCRT accumulation, suggesting disruption of ESCRT disassembly, lysosomal membrane repair, and microautophagy. Lipid dysregulation leads to lysosomal membrane permeabilization but does not otherwise impact fundamental aspects of lysosomal and proteasomal functions. Together, these results demonstrate that lipid dysregulation disrupts ESCRT function and impairs proteostasis.